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Abstract

The physical basis of Bagnold’s equation for critical stream power is examined. Although the general approach is well

founded, the original equation can be criticised for (1) failing to distinguish between the grain size in transport and the grain size

that represents bed roughness; (2) requiring a knowledge of critical flow depth in addition to gross channel properties; (3)

failing to allow for hiding and protrusion effects on the mobility of mixed-size stream beds. More general equations are

presented which overcome these limitations. They require a knowledge of channel slope, but not depth. The analysis suggests

that the presence of form resistance in addition to grain roughness does not affect the calculation of critical power. Critical

power is expected to depend more sensitively on grain size between reaches than within reaches.
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1. Introduction

Bedload transport in gravel-bed rivers is commonly

assumed to occur at a very low rate up to a certain

critical level of streamflow, then to increase at a faster-

than-linear rate with flow above this threshold. The

flow variable used to predict bedload transport is

usually shear stress, as for example in the well known

equation of Meyer-Peter and Müller (1948). In uni-

form flow the mean shear stress, averaged across the

channel, depends on the depth-slope product:

s ¼ qgdS ð1Þ

where q denotes the density of water, g the accel-

eration due to gravity, d the mean flow depth, and S the

bed and water-surface gradient. Bagnold (1977, 1980)

proposed that bedload transport could alternatively be

predicted from the mean value of stream power per

unit bed area, defined as

x ¼ qgQS=w ¼ sU ð2Þ
where Q denotes the water discharge, w the width of

the river, and U the mean velocity. It should be noted

that Bagnold omitted g in his equations; this has led to

much confusion in the subsequent literature. Eq. (2)

quantifies the rate of loss of potential energy as water

flows downhill, and thus the power potentially

available for performing geomorphic work. Bagnold
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proposed that bedload transport rate increases non-

linearly with stream power above a threshold or critical

value which I shall denote by xc.

Bagnold’s approach is conceptually attractive

insofar as it treats rivers as transporting (and therefore

work-performing) machines with explicit attention to

their efficiency. It is also pragmatically convenient in

that stream power can be calculated from gross

channel properties (width and slope), together with

the discharge provided by the catchment, without

needing to know within-channel flow properties such

as depth or velocity. Discharge is essentially constant

from one junction to the next along a river and may be

known from hydrometric records or predictable from

a hydrological model, whereas depth (needed for the

calculation of shear stress) is locally variable and not

routinely measured. Partly for these reasons, and also

because it has performed well in some comparative

tests (Gomez and Church, 1989; Martin and Church,

2000), Bagnold’s transport equation has been used

quite widely in the geomorphology literature.

There has been some re-evaluation of the effi-

ciency factor in Bagnold’s transport equation (e.g.

Bagnold, 1980; Martin and Church, 2000), but all

users of any version of the equation appear to have

accepted Bagnold’s (1980) proposal for specifying the

critical power in terms of river properties:

xc ¼ c1D
1:5log c2d=Dð Þ ð3Þ

where c1 and c2 are numerical constants, D denotes

the diameter of mobilised particles, and the logarithm

is to base 10. Bagnold (1980) gave c1=290 and

c2=12 without fully explaining his derivation. These

values are for D in the same units as d, for example

metres; and, as noted below, the predicted values of

xc are not in the standard units of W m�2.

The lack of attention to the specification of the

threshold is surprising considering that all gravel

transport equations are extremely sensitive to the

threshold value of whichever flow variable is used,

and that there is an extensive literature on threshold

shear stresses for poorly sorted river beds (see for

example Andrews, 1983; Komar, 1987; Ashworth and

Ferguson, 1989). Petit et al. (2005) take an important

first step towards assessing whether Eq. (3) is

universally valid. They present a useful and interest-

ing synthesis of empirically derived critical specific

stream power values for streams in Belgium, and

compare them with a version of Eq. (3). Their results

are based on the movement of tracer pebbles in 14

streams and rivers with slopes ranging from b0.002 to

0.05. The inferred values of critical power show clear

correlations with D within each data set, as expected

from Eq. (3), but with displacements between data

sets. Petit et al. (2005) speculate that these displace-

ments reflect the varying importance of bedform

resistance to flow in small, medium, and large rivers.

Critical stream power was found to be higher in

channel styles where a higher proportion of the total

shear stress (as given by Eq. (1)) is dissipated in

overcoming bedform resistance.

This note was inspired by reading the work of Petit

et al. (2005) but is largely complementary to it. I

consider the question of critical stream power from a

theoretical point of view. I show that Bagnold’s

expression for critical power can be criticised on

several grounds, and present alternative equations

based on a more detailed analysis which overcomes

these problems. I then discuss the implications for

differences in critical power within and between

reaches. I argue on physical grounds that critical

power is not affected by form resistance, but is higher

in reaches with coarser beds and also varies somewhat

with channel slope; this provides an alternative

explanation for the pattern of differences found by

Petit et al. (2005). A detailed comparison with their

data is not possible at this time for lack of sufficient

published detail about the characteristics of their

individual reaches. The theoretical rate of increase

of critical power with grain size within reaches is less

than suggested by the empirical curves presented by

Petit et al. and previous workers, but the discrepancy

is mainly due to their aggregation of results from

different reaches.

2. Derivation of general equations for critical

stream power

Bagnold (1980) derived Eq. (3) from the identity

xc= scUc by relating sc to D through Shields’

criterion for incipient motion, and relating Uc to d/

D using a flow resistance equation of logarithmic

type. He gives few further details of the derivation but

it is fairly easy to reconstruct. Before doing so,

though, a first criticism of Bagnold’s equation is
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