

Chemical Geology 218 (2005) 15-24

www.elsevier.com/locate/chemgeo

Influence of elevated concentrations of atmospheric CO₂ on CH₄ and CO₂ entrapped in rice-paddy soil

Weiguo Cheng^{a,*}, Kazuyuki Yagi^a, Hua Xu^b, Hidemitsu Sakai^a, Kazuhiko Kobayashi^c

^aNational Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan ^bInstitute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China

^cGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Received 25 February 2004; received in revised form 30 August 2004; accepted 26 January 2005

Abstract

Controlled environment chambers were used to study the influence of elevated atmospheric CO₂ concentration on CH₄ and CO₂ entrapped in soil bubbles and in solution in rice-paddy soil. Throughout the growing season, CO₂ concentration was maintained at $383 \pm 11 \ \mu mol \ mol^{-1}$ during the day and $446 \pm 40 \ \mu mol \ mol^{-1}$ at night for ambient CO₂ treatment, and at $706 \pm 13 \ \mu\text{mol} \ \text{mol}^{-1}$ (day) and $780 \pm 76 \ \mu\text{mol} \ \text{mol}^{-1}$ (night) for the elevated CO₂ treatment. At the grain-filling stage of growth, rice plants in the chambers were supplied with ¹³C-enriched CO₂ (δ^{13} C=413.9%) for 3 days to study the allocation and transformation of photosynthetic carbon to root biomass, water-soluble organic carbon (WSOC) in soil solution, and CO₂ and CH_4 entrapped in the soil. Elevated atmospheric CO₂ concentration not only directly increased the biomass above ground and in the roots by photosynthesis, but also indirectly increased the amounts of CH₄ and CO₂ entrapped in the soil. Most of the CO₂ was dissolved in soil solution, but in contrast most of the CH_4 existed in soil bubbles. When rice was fed with ¹³C-enriched CO_2 at the grain-filling stage of growth, the increase in 13 C of entrapped CO₂ under ambient CO₂ conditions accounted for 1.476% of the increase in 13 C of the rice plants and for 1.845% of the increase in 13 C of rice plants grown under elevated CO₂ conditions. The increase in ¹³C of entrapped CH₄ accounted for 0.178% and 0.234% of the increase in ¹³C of rice plants grown under ambient and elevated CO₂ treatments, respectively. Under conditions of elevated CO₂ the entrapped ¹³C–CO₂ and ¹³C– CH₄ increased by 57% and 65%, respectively. The increase in ¹³C after feeding with ¹³C-enriched CO₂, as a proportion of the total C of plants before feeding, was higher for CH₄ entrapped in rice-paddy soil than for CO₂ entrapped in rice-paddy soil, WSOC in soil solution, aboveground biomass, and root biomass under both ambient and elevated CO₂ treatments. This indicates that during the grain-filling stage of rice growth, photosynthesized carbon had the most impact on CH₄ production and accelerated the CH₄ turnover rate.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Bubble; Carbon dioxide (CO₂); Isotope; Methane (CH₄); Rice; Soil solution

* Corresponding author. Tel.: +81 29 838 8231; fax: +81 29 838 8199. *E-mail address:* cheng@niaes.affrc.go.jp (W. Cheng).

1. Introduction

Recent anthropogenic emissions of key atmospheric trace gases (the so-called greenhouse gases, e.g., CO₂, CH₄, N₂O, and CFCs) that absorb infrared radiation may lead to an increase in global mean surface temperature, subsequent changes in climate (IPCC, 1995). Long-term records demonstrate a steady rise in atmospheric CO₂ since the pre-industrial era, with an accelerated rate of rise in recent decades (Houghton et al., 1990), and it is thought that the concentration of CO_2 in the atmosphere may double by the middle of the 21st century (Bolin, 1986). After CO_2 , methane (CH₄) is the most important greenhouse gas, responsible for approximately 20% of the anthropogenic global warming effect. The concentration of atmospheric CH₄ increased from 0.75 to 1.73 μ mol mol⁻¹ during the past 150 years (Lelieveld et al., 1998). It was increasing at about 1% per year (Crutzen, 1991), although the rate of increase of CH_4 has declined (Dlugokencky et al., 1998).

Most atmospheric CH₄ is produced by microbial activity in extremely anaerobic ecosystems, such as natural and cultivated wetlands, sediments, sewage, landfills, and the guts of ruminants animals. Methane from rice paddies accounts for about 17% of the total anthropogenic sources (IPCC, 1995). In rice-paddy soil, acetate and H₂–CO₂ are the major substrates for CH₄ production (Takai, 1970), and plant-mediated transport is a very important pathway for CH₄ emission from the soil (Inubushi et al., 1989; Schutz et al., 1989; Nouchi et al., 1990; Wassmann et al., 1996).

Many studies have demonstrated that elevated concentrations of CO_2 have a positive effect on rice biomass production (above and below ground) and on grain yield (Baker and Allen, 1993; Ziska et al., 1997; Sakai et al., 2001; Kim et al., 2001, 2003). Elevated CO_2 also increases soil microbial C and accelerates the turnover rate of soil organic C during the middle and later stages of the rice development (Cheng et al., 2001; Hoque et al., 2001). The direct effect of elevated CO_2 on rice root biomass and tiller number can potentially increase CH_4 emission from rice fields by 50%–60% (Ziska et al., 1998; Inubushi et al., 2003). The roots of rice plants grown under CO_2 -enriched conditions may also enhance CH_4 production directly by providing carbon substrates in the form of

root exudates or root autolysis products, which are easily decomposed by fermentative bacteria to CO_2 , H_2 , and acetate, which are then utilized by methanogens (Minoda et al., 1996).

Except for N₂, CH₄ and CO₂ are the two main constituents of the gas found in flooded rice-paddy soil. Because CH₄ is less soluble than CO₂ in water, most of the CH₄ produced is entrapped as bubbles in flooded rice-paddy soil (Uzaki et al., 1991; Chidthaisong and Watanabe, 1997). Entrapped CH₄ in flooded rice-paddy soil could be (1) oxidized to CO₂ in the rice rhizosphere and the floodwater-soil interface as it diffuses upwards; (2) released by ebullition (bubbles); or (3) emitted to the atmosphere through the rice plant. Studying CH₄ entrapped in soil bubbles is useful for understanding how CH₄ is produced, oxidized, and emitted to the atmosphere. Ziska et al. (1998) found that the amounts of CH_4 emitted from tropical rice paddies were consistent with changes in the amounts of dissolved CH₄. A comparison between the amounts of CH₄ entrapped in rice-paddy soil bubbles and the amounts of CH₄ dissolved in soil solution is, therefore, important to our understanding of CH₄ dynamics.

A few studies have used ¹³C or ¹⁴C pulse-labeling experiments to examine the contribution of photosynthates to CH₄ production and emission in rice paddies and wetlands (Minoda et al., 1996; King and Reeburgh, 2002). However, there are no reports of how increased atmospheric CO₂ concentration influences the contribution of photosynthates to CH₄ and CO₂ production in rice-paddy soil. Here we report the results of a ¹³C pulse-labeling experiment conducted under controlled environmental conditions to evaluate the effects of elevated concentrations of atmospheric CO₂ on CH₄ and CO₂ dynamics in rice-paddy soil by measuring δ^{13} C and the amounts of CO₂ and CH₄ entrapped in both soil bubbles and soil solution.

2. Materials and methods

2.1. Controlled environment chambers and experimental design

This research was conducted at National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan in a growth chamber system (Climatron; Download English Version:

https://daneshyari.com/en/article/9529038

Download Persian Version:

https://daneshyari.com/article/9529038

Daneshyari.com