
Journal of the Franklin Institute 342 (2005) 629–637

The 2004 Benjamin Franklin Medal in Computer
and Cognitive Science presented to

Richard M. Karp

Bruce Char�

Department of Computer Science, Drexel University, Philadelphia, PA 19104, USA

Abstract

The Benjamin Franklin Medal in Computer and Cognitive Science is awarded to Dr.

Richard M. Karp for his contributions to the understanding of computational complexity. His

work helps programmers find workable solution procedures avoiding approaches that would

fail to find a solution in a reasonable amount of time. Scientific, commercial, or industrial

situations where his work applies include establishing least-cost schedules for industrial

production, transportation routing, circuit layout, communication network design, and

predicting the spatial structure of a protein from its amino acid sequencing.

r 2005 Published by Elsevier Ltd. on behalf of The Franklin Institute.

Keywords: Computational complexity; Polynomial time algorithms; Theory of computation; NP-

completeness; Combinatorial problems

1. Introduction and background

1.1. The history and context for Richard Karp’s work on computational complexity

With the advent of ‘‘high-speed’’ electronic computing starting fromWorld War II,
many problems that had previously been too laborious to solve through calculation
became feasible. Some of these problems involved finding approximations to the

ARTICLE IN PRESS

www.elsevier.com/locate/jfranklin

0016-0032/$30.00 r 2005 Published by Elsevier Ltd. on behalf of The Franklin Institute.

doi:10.1016/j.jfranklin.2005.04.009

�Tel.: +1 215 895 2670; fax: +1 215 895 1582.
E-mail address: charbw@drexel.edu.

www.elsevier.com/locate/jfranklin

solutions of problems in continuous mathematics, for example, those involving
solution of systems of algebraic or differential equations. Others involved
‘‘combinatorial optimization’’. Richard Karp himself described these problems in
his 1985 Turing Award lecture:

Combinatorial search problemsy can be likened to jigsaw puzzles where one has
to assemble the parts of a structure in a particular way. Such problems involve
searching through a finite, but extremely large, structured set of possible
solutions, patterns, or arrangements, in order to find one that satisfies a stated set
of conditions. Some examples of such problems are the placement and
interconnection of components on an integrated circuit chip, the scheduling of
the National Football League, and the routing of a fleet of school buses. Within
any one of these combinatorial puzzles lurks the possibility of a combinatorial
explosion.
Because of the vast, furiously growing number of possibilities that have to be
searched through, a massive amount of computation may be encountered unless
some subtlety is used in searching through the space of possible solutions [1].

Thoughtful work on each kind of problem led to advances—more efficient
algorithms for solving them. This allowed faster solution finding, or the ability to
handle larger versions of the problems (scheduling more teams, or figuring out how
to interconnect chips with more components). However, those who worked on
solving combinatorial problems realized that some seemed to admit no particularly
efficient general techniques for solving them. However, rigorously establishing and
characterizing this difficulty required a theory of computation to handle this.
It was known from Alan Turing’s ‘‘uncomputability’’ result [2] that there were

some problems which lacked computer algorithms to solve them. Yet this result
seemed primarily of interest to theoreticians. Combinatorial problems typically can
be solved by enumerating and trying all possible ways of combining the entities
involved, and seeing which one solves the problem. Since there are only a finite
(albeit very large) number of possibilities, this approach always produces a solution
algorithm for combinatorial problems. However, from a practical viewpoint the
number of possibilities is so large, even for relatively modestly sized problems, that
such algorithms would take more time than the age of the universe, even if run on an
ultra-fast computer with many processors running in parallel. What was needed
from the theory of computation was some way of determining if these combinatorial
problems were inherently difficult (even if not impossible), or whether there was a
yet-unfound technique that could make a solution of such problems tractable.
Computer scientists working in the theory of computation, in addition to continuing
to find new or improved algorithms to problems, started spending time trying to
characterize the differences in problems that made some easier (faster) to solve than
other kinds of problems in hope of making the search for improved algorithms more
sophisticated.
During the 1950s and the 1960s, the theory of computing had focused on the

capabilities of a few mathematically specified models of automata: finite automata
(regular sets), pushdown automata (context-free languages), and Turing Machines

ARTICLE IN PRESS

B. Char / Journal of the Franklin Institute 342 (2005) 629–637630

Download English Version:

https://daneshyari.com/en/article/9540625

Download Persian Version:

https://daneshyari.com/article/9540625

Daneshyari.com

https://daneshyari.com/en/article/9540625
https://daneshyari.com/article/9540625
https://daneshyari.com

