

PHYTOCHEMISTRY

Phytochemistry 66 (2005) 573-579

www.elsevier.com/locate/phytochem

Chromenes of polyketide origin from Peperomia villipetiola

Karina J. Malquichagua Salazar ^a, Guillermo E. Delgado Paredes ^b, Luis Ripalda Lluncor ^b, Maria Claudia Max Young ^c, Massuo Jorge Kato ^{a,*}

a Instituto de Química, Universidade de São Paulo, CP 26077, 05508-900 São Paulo, SP, Brazil
 b Facultad de Biología, Universidad Pedro Ruiz Gallo, Lambayeque, Peru
 c Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, CP 4005, 01051 São Paulo, SP, Brazil

Received 3 September 2004; received in revised form 24 November 2004

Abstract

An extract of leaves and stems of *Peperomia villipetiola* has been found to contain myristicin (3-methoxy-4,5-methylenedioxy-allylbenzene) and seven chromenes, whose structures are methyl 5-hydroxy-7-methyl-2,2-dimethyl-2*H*-1-chromene-6-carboxylate (1), methyl 5-methoxy-7-methyl-2,2-dimethyl-2*H*-1-chromene-8-carboxylate (2), methyl 7-hydroxy-5-methyl-2,2-dimethyl-2*H*-1-chromene-6-carboxylate (3), methyl 7-methoxy-5-methyl-2,2-dimethyl-2*H*-1-chromene-6-carboxylate (4), 5-methanol-7-hydroxy-2,2-dimethyl-2*H*-1-chromene-6-carboxylic acid (6), and methyl 5-acetoxymethanol-7-hydroxy-2,2-dimethyl-2*H*-1-chromene-6-carboxylate (7). A biosynthetic rationale for 1–7 suggests that orsellinic acid may be a common intermediate. The anti-fungal activities of the chromenes were measured bioautographically against *Cladosporium cladosporioides* and *Cladosporium sphaerospermum*: compounds 6 and 7 were found to be the most active.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Peperomia villipetiola; Piperaceae; Structural elucidation; Anti-fungal activity; Chromenes; Orsellinic acid

1. Introduction

The chemistry of the Piperaceae family is based on the occurrence of phenylpropanoids (Orjala et al., 1993), lignan/neolignans (Monache and Compagnone, 1996; Parmar et al., 1997; Benevides et al., 1999), pyrones (Singh, 1992), aliphatic and aromatic amides (Alécio et al., 1998; Silva et al., 2002), alkaloids (Dodson et al., 2000), polyketides (Cheng et al., 2003) and chromenes (Moreira et al., 1998; Baldoqui et al., 1999; Lago et al., 2004). Most of the studies reported to date have concerned species of the genus *Piper*. Only a few species of *Peperomia* have been subjected to systematic chemical

E-mail address: majokato@iq.usp.br (M.J. Kato).

investigation even though many members of this genus are to be found worldwide, particularly in collections of ornamentals.

Of the secondary metabolites that have been isolated from *Peperomia* species, the most noteworthy are the seco-compounds, e.g., the secolignans from *Peperomia glabella* (Monache and Compagnone, 1996) and *Peperomia dindigulensis* (Govindachari et al., 1998), and the cyclobutane compound from *Peperomia pellucida* which seems to be produced by dimerisation of styryl phenol (a seco-phenylpropanoid) (Bayma et al., 2000). Together with these, a number of acylphloroglucinol or phenolic compounds with long aliphatic chains have been isolated from *Peperomia clusiifolia* (Seeram et al., 1998), *Peperomia vulcanica* (Mbah et al., 2002), *Peperomia obtusifolia* (Tanaka et al., 1998), *Peperomia galiodes* (Mahiou et al., 1996) and *Peperomia proctorii* (Seeram et al., 2000).

^{*} Corresponding author. Tel.: +55 11 3091 3813; fax: +55 11 3815 5579.

In the present work the isolation, structural elucidation and determination of the anti-fungal activities of seven new chromenes from *Peperomia villipetiola* are reported. The bioautographic assay used has been successfully employed in our laboratories over a number of years for screening anti-fungal compounds in Piperaceae species (Alécio et al., 1998; Baldoqui et al., 1999; Navickiene et al., 2000; Silva et al., 2002; Lago et al., 2004).

2. Results and discussion

The CH₂Cl₂:MeOH (2:1) extract of the aerial parts of *P. villipetiola* was fractionated by CC and TLC to yield myristicin (3-methoxy-4,5-methylenedioxy-allylbenzene) and compounds 1–7. The basic skeleton of 1–7 was determined to be of the chromene type by virtue of a common set of ¹H NMR spectra (Table 1) that displayed an AB system at δ 5.52–5.69 (*d*, 10Hz) and 6.13–6.69 (*d*, 10Hz), and intense singlets at δ 1.39–1.46 (6H) characteristic of the 2,2-di-

methyl-2*H*-1-chromene moiety. This structure was further confirmed by inspection of the UV, IR and ¹³C NMR spectra (see Section 3 and Table 2). MS data, together with elemental analysis and NMR spectra, were employed to determine the molecular formula Additionally, a fragment of each compound. $[M-15]^+$, associated with the loss of a methyl radical and observed in all MS, provided complementary evidence of the identity of the chromene moiety (Diaz et al., 1987). A common feature in the NMR spectra of all compounds was a unique singlet for the aromatic hydrogen (δ 6.19–6.46, s, 1H) in the ¹H NMR spectra with a corresponding aromatic methine carbon $(\delta 98.1-111.9)$ in the ¹³C NMR spectra. The three remaining substituents on the aromatic ring were determined to be hydroxyl for 1, 3, 5 and 7, methoxyl for 2, 4 and 6, methyl for 1-4, carboxyl for 5-6, methyl carboxylate for 1-4 and 7, methanol for 5 and 6, and acetoxy-methanol for 7. Assignments of the substituents in each case were achieved by interpretation of spectrometric data including IR, ¹H NMR and, especially, HMBC.

Table 1 ¹H NMR spectroscopic data (300 MHz, CDCl₃) for chromenes 1–7 isolated from *Peperomia villipetiola*

-	•						
Hydrogen	1	2	3	4	5	6	7
3	5.52	5.53	5.60	5.55	5.61	5.59	5.69
	(1H, d, 10)	(1H, d, 10.0)	(1H, d, 10.0)	(1H, d, 10.0)	(1H, d, 10.0)	(1H, d, 10)	(1H, d, 10.0)
4	6.69	6.59	6.56	6.44	6.13	6.15	6.53
	(1H, d, 10)	(1H, d, 10.0)	(1H, d, 10.0)	(1H, d, 10.0)	(1H, d, 10.0)	(1H, d, 10)	(1H, d, 10.0)
6		6.23 (1H, s)					
8	6.19 (1H, s)		6.29 (1H, s)	6.28 (1H, s)	6.33 (1H, s)	6.35 (1H, s)	6.46 (1H, s)
9	2.46 (3H, s)	2.29 (3H, s)	2.48 (3H, s)	2.20 (3H, s)	5.23 (2H, s)	5.15 (2H, s)	5.40 (2H, s)
10, 11	1.43 (6H, s)	1.39 (6H, s)	1.41 (1H, s)	1.40 (6H, s)	1.45 (6H, s)	1.46 (6H, s)	1.43 (6H, s)
2'	3.92 (3H, s)	3.87 (3H, s)	3.93 (3H, s)	3.89 (3H, s)			3.90 (3H, s)
1"		3.81 (3H, s)		3.77 (3H, s)		3.92 (3H, s)	
2"						, , ,	2.07 (3H, s)
CH_2OH					7.62 (1H, s)		
Ar-OH	11.97 (1H, s)		11.39 (1H, s)				11.32 (1H, s)

Table 2 ¹³C NMR spectroscopic data^a (75 MHz, CDCl₃) for chromenes 1–7 isolated from *Peperomia villipetiola*

Carbon	1	2	3	4	5	6	7
2	77.3 (C)	76.4 (C)	76.2 (C)	76.0 (C)	77.9 (C)	78.1 (C)	76.6 (C)
3	127.4 (CH)	128.6 (CH)	128.8 (CH)	128.3 (CH)	129.6 (CH)	129.1 (CH)	130.5 (CH)
4	116.4 (CH)	116.5 (CH)	119.1 (CH)	118.8 (CH)	116.4 (CH)	116.4 (CH)	118.1 (CH)
4a	107.3 (C)	108.6 (C)	113.9 (C)	113.1 (C)	108.5 (C)	107.6 (C)	115.4 (C)
5	159.8 (C)	155.7 (C)	137.4 (C)	132.3 (C)	142.8(C)	145.7 (C)	132.2 (C)
6	105.1 (C)	104.8 (CH)	106.4 (C)	117.1 (C)	103.8(C)	106.0 (C)	106.2 (C)
7	142.7 (C)	137.3 (C)	164.0 (C)	157.2 (C)	157.4 (C)	159.6 (C)	163.9 (C)
8	111.9 (CH)	116.0 (C)	102.9 (CH)	98.1 (CH)	103.7 (CH)	100.9 (CH)	105.6 (CH)
8a	157.5 (C)	151.6 (C)	158.9 (C)	155.2 (C)	160.9 (C)	160.0 (C)	158.9 (C)
9	24.4 (CH ₃)	20.3 (CH ₃)	17.6 (CH ₃)	15.4 (CH ₃)	69.2 (CH ₂)	67.2 (CH ₂)	60.2 (CH ₂)
10, 11	28.3 (CH ₃)	27.57 (CH ₃)	28.01 (CH ₃)	27.7 (CH ₃)	28.26 (CH ₃)	28.3 (CH ₃)	28.0 (CH ₃)
1'	172.4 (C)	168.44 (C)	172.16 (C)	169.0 (C)	172.3 (C)	168.8 (C)	171.0 (C)
2'	51.8 (C)	51.74 (CH ₃)	51.9 (CH ₃)	52.0 (CH ₃)			52.3 (CH ₃)
1"		55.6 (CH ₃)		55.8 (CH ₃)		56.1 (CH ₃)	170.6 (C)
2"				, ,			20.7 (CH ₃)

^a Multiplicities (CH_n; n = 0-3) given for ¹³C NMR/Dept 135° spectrum associated with HETCOR data (300 and 75 MHz, CDCl₃).

Download English Version:

https://daneshyari.com/en/article/9557438

Download Persian Version:

https://daneshyari.com/article/9557438

<u>Daneshyari.com</u>