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1. Introduction

The total ion spectrum (TIS), defined as the time-averaged mass
spectrum across the chromatographic profile [1], has previously
been used for classification and discrimination of fire debris
samples and prediction of classification error rates [1–4] based on
the classes defined in the American Society for Testing and
Materials (ASTM) standard E1618-11 [5]. Unlike the total ion
chromatogram (TIC), the TIS is time-independent, easily allowing
for inter-laboratory comparisons. In this work, a subset of ions
chosen from Table 2 of ASTM E1618-11 is used to generate
extracted ion spectra (EIS). These EIS are then analyzed by the
artificial neural networks method of self-organizing feature maps
(SOFMs). For this work, the method is used to determine if the
unsupervised clustering of time-independent EIS data results in
groupings of the data according to their ASTM class designations.

Ignitable liquid residues are classified by analysts in the United
States according to the standard ASTM E1618-11 by pattern
recognition of the TICs, extracted ion profiling, and target
compound analysis [5]. Ignitable liquids are largely comprised
of six major types of compounds: normal alkane, branched alkane,
cycloalkane, aromatic, polynuclear aromatic, and oxygenates [5].

Characteristic ions compiled in Table 2 of ASTM E1618-11 are used
for extracted ion profiling [5]. The chromatographic profile pattern
along with the presence and relative amounts of the major types of
compounds are used to classify ignitable liquids into seven major
classes [5]: gasoline (GAS), petroleum distillates (PD), isoparaffinic
products (ISO), aromatic products (AR), naphthenic–paraffinic
products (NP), normal alkane products (NA), and oxygenated
solvents (OXY). Those ignitable liquids that do not fall into one of
the aforementioned classes or may fall into multiple classes are
assigned to a miscellaneous category (MISC) [5]. Subdivisions of
the classes, with the exception of the gasoline class, are based on
the range of n-alkanes present and are defined as light (L), medium
(M), and heavy (H) corresponding to C4–C9, C8–C13, and C9–C20+,
respectively [5].

Visual pattern recognition is dependent on the interpretation
of the chromatographic data by the analyst [1,6] and does not
readily lend itself to automation; therefore, non-subjective
chemometric techniques, which involve the extraction of
information from chemical data, have been explored [7]. Many
chemometric techniques allow for data visualization by reduc-
ing the dimensionality of the data [4,8] and clustering or
grouping of data based on similar characteristics [9]. Kohonen’s
SOFMs also known as self-organizing maps (SOMs), is an
artificial neural networks technique designed as a method for
abstraction, clustering, and visualization of high-dimensional
data [10–12]. This is usually accomplished through nonlinear
mapping onto a two-dimensional grid space of a predefined
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A B S T R A C T

The unsupervised artificial neural networks method of self-organizing feature maps (SOFMs) is applied

to spectral data of ignitable liquids to visualize the grouping of similar ignitable liquids with respect to

their American Society for Testing and Materials (ASTM) class designations and to determine the ions

associated with each group. The spectral data consists of extracted ion spectra (EIS), defined as the time-

averaged mass spectrum across the chromatographic profile for select ions, where the selected ions are a

subset of ions from Table 2 of the ASTM standard E1618-11. Utilization of the EIS allows for inter-

laboratory comparisons without the concern of retention time shifts. The trained SOFM demonstrates

clustering of the ignitable liquid samples according to designated ASTM classes. The EIS of select samples

designated as miscellaneous or oxygenated as well as ignitable liquid residues from fire debris samples

are projected onto the SOFM. The results indicate the similarities and differences between the variables

of the newly projected data compared to those of the data used to train the SOFM.
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number of neurons, where each neuron contains a weight vector
that is comprised of the same number of components as the
number of variables (or dimensionality) of the input space [13].
The weight vectors are adjusted through an unsupervised
learning process resulting in the neurons being arranged
according to patterns in the input signal [11]. When a sample
is introduced to the map, a distance is calculated between the
sample variable vector and the weight vector for each neuron,
where the Euclidean distance is often used. The neuron with the
smallest distance to the sample is determined to be the
‘‘winning neuron’’, and the weight vector for that neuron is
adjusted to be more similar to the sample vector. The weight
vectors of neighboring neurons that are a given distance from
the winning neuron are also updated, which preserves the
neighborhood relationships of the data within the input space
[13]. This training process is repeated for each of the samples
resulting in the completion of one full cycle or epoch, and this
process is repeated iteratively for a predefined number of
epochs [14]. A batch algorithm may also be used [10,15]. The
amount of adjustment to the weight vectors and the neighbor-
hood size are varied throughout the training process [16]. In the
last step of training, the input data is re-introduced to the grid,
and the samples are mapped onto the winning neurons [14].
This process results in a two-dimensional map of neurons,
where sample data is clustered based on similarity while
preserving the neighborhood relationships of the data [8,10,15].

SOFMs have previously been used for clustering and/or
classifying samples analyzed by GC–MS. Strawberry varieties
were studied using solid-phase micro-extraction GC–MS data
and clustered according to type by SOFM [17]. Crude oil [18] and
weathered crude oil samples [14] were geographically classified.
Weathered and unweathered lighter fluids were classified based
on manufacturer [6], and classification according to product type
and brands were performed for weathered and unweathered
medium petroleum distillates [19]. A set of 150 ions resulting
from pyrolysis mass spectrometry was analyzed with SOFMs to
classify plant seeds [16]. While SOFMs have been used for
classification, Kohonen points out that self-organizing feature
maps are a beneficial unsupervised method for clustering,
visualization, and abstraction, but are not meant for statistical
pattern recognition [10]. A method that is ‘‘particularly suitable
for statistical pattern recognition’’ is a supervised version of
SOFM known as Learning Vector Quantization (LVQ) [10]. In
addition to clustering, a SOFM allows visual associations
between individual variables and clustered samples in order to
determine feature attributes for natural clusters within the input
data space.

In this work, 313 ignitable liquids from varying ASTM classes
are grouped using the unsupervised SOFM technique, and
ignitable liquid residues are analyzed based on the SOFM
model. The natural clusters of the input data and the relation-
ships between these clusters and their spectral variables are
examined with respect to their ASTM class designations. Many
chemometric techniques for analyzing ignitable liquids have
utilized TIC data [6,14,17–19]; however, in this work, the EIS are
utilized to make the results applicable across multiple labora-
tories by overcoming inter-laboratory retention time shifts that
may occur using chromatographic data [1]. The SOFMs are
created using these EIS of primarily unweathered and some
weathered samples obtained from data in the Ignitable Liquids
Reference Collection (ILRC) [20]. The EIS of select samples
designated as MISC or OXY, as well as ignitable liquid residues
from fire debris samples, are projected onto the SOFM
demonstrating the similarities and differences between the
variables of the newly projected data compared to those of the
data used to train the SOFM.

2. Materials and methods

2.1. Samples

The SOFM training dataset consisted of EIS for liquids in the
ILRC database, which were designated as GAS, AR, ISO, NA, NP,
LPD, MPD, HPD and OXY ASTM classes. The OXY samples used for
training contained predominantly oxygenated compounds and
did not have chemical characteristics of other ASTM classes. The
ILRC was created and is maintained by the National Center for
Forensic Science (NCFS) in collaboration with the Scientific
Working Group for Fire and Explosions (SWGFEX). Classification
of the ignitable liquids in the ILRC was performed by a committee
of practicing fire debris analysts. The training dataset used in this
work was comprised of 313 ignitable liquid samples including
289 unweathered ignitable liquid samples as well as 24
weathered GAS samples. The training samples designated as
ISO were further sub-classified as light, medium, and heavy
(LISO, MISO, and HISO, respectively) based on their carbon range.
AR samples were also further sub-classified as light and medium
(LAR and MAR) based on their carbon range. The fire debris
dataset contained 116 EIS of ignitable liquid residues extracted
from fire debris samples that were produced in laboratory and
large-scale burns. The samples were extracted following the
ASTM E1412-07 method [21], and the ignitable liquid residue
patterns were observed in the chromatograms. The class
designations for the fire debris samples corresponded to the
ASTM class of the unweathered ignitable liquid used in the burn.
A third dataset was compiled, where the samples had chemical
characteristics of multiple ASTM classes. This dataset was
comprised of 33 MISC and seven OXY samples from the ILRC.
Sample preparation and instrumental analysis for all of the
datasets are described in previous work [3].

The EIS for all datasets were comprised of 29 ions chosen as a
subset from Table 2 of ASTM E1618-11 [5]. These ions which are
typically produced in the EI mass spectrum are listed in Table 1
according to their mass-to-charge (m/z) ratios and their corre-
sponding compound type. These ions represent compound types
commonly observed in ignitable liquids within the seven major
ASTM classes. Each EIS was normalized so the most abundant ion
had an intensity of one.

2.2. Self-organizing feature map

2.2.1. Training of the self-organizing feature map

SOFM calculations were performed using the Neural Network
ToolboxTM 7 with MATLAB R2011b (MathWorks, Natick, MA, USA).
Several hexagonal grid sizes were investigated. The 15 � 15 unit
hexagonal grid resulted in the minimal number of neurons being
associated with more than one ASTM class. A total of 112,500
epochs, 500 times the number of neurons were calculated, where
the ordering phase of learning consisted of 1000 epochs and an
initial neighborhood size of 13 [11]. Therefore, in the first epoch of
the ordering phase, the winning neuron and the neurons within a
13 neuron radius from the winning neuron had their weight
vectors adjusted. The neighborhood size decreased from 13 to one
as the number of epochs in the ordering approached 1000. The
subsequent tuning phase had a neighborhood size of one, so only
the weight vector of the winning neuron was adjusted. The default
batch training method in the Matlab Neural Network ToolboxTM 7
was used, where for each epoch, the whole dataset was presented
to the network. The winning neuron for each input vector was
determined, and the weight vectors were moved to the average
position of all input vectors for which the weight vector was a
winner or in the neighborhood of a winner [15]. In the batch
training mode, a learning-rate parameter was not used [10].
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