

Tetrahedron

Tetrahedron 61 (2005) 643-655

Stereoselective synthesis of swainsonines from pyridines

Gerres Heimgärtner, Dirk Raatz and Oliver Reiser*

Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, D-93040, Germany

Received 7 September 2004; revised 27 October 2004; accepted 28 October 2004

Available online 23 November 2004

Abstract—An efficient synthesis of (-)-swainsonine and (-)-2,8a-di-*epi*-swainsonine was developed starting from readily available 2-pyridinecarbaldehyde and 3-hydroxypyridine. In particular, it was demonstrated that the mixture of simple indolizidines, i.e. lentiginosine and *epi*-lentiginosine, being readily available by a number of different synthetic routes, can be directly converted to swainsonine. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Indolizidines belong to an important class of alkaloids that have received broad attention due to their biological properties such as antimetastatic, antitumor-proliferative, anticancer or immunoregulating activity.¹ Most prominent, (-)-swainsonine (**1b**) is a very potent α -mannosidase inhibitor, being currently under clinical evaluation.² Despite their relative simple structure, the synthesis of indolizidines has remained challenging, although a number of elegant routes towards them have been reported³ (Fig. 1).

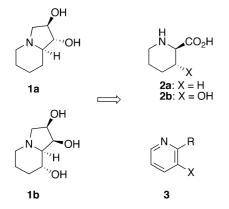


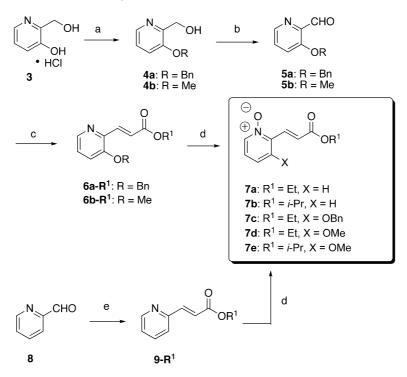
Figure 1. Retrosynthetic analysis of indolizidines.

One obvious approach towards indolizidines would be construction of the five-membered ring by appropriate functionalization of (hydroxylated) pipecolic acids, and indeed, this approach was successfully developed for the synthesis of (-)-lentiginosine (1a) and also of (-)-swainsonine (1b).⁴

However, even the parent pipecolic acid (2a) is not readily available in enantiomerically pure form since it is not available from the chiral pool, and—despite contrary announcements⁵—an efficient chemical large scale process is yet to be developed.

An alternate approach towards indolizidines can be envisioned from pyridines, requiring the efficient transformation of the pyridine into a piperidine ring at some point in the synthesis.⁶ Following our interest to use heteroaromatic starting materials such as pyrrols,⁷ furans⁸ or pyridines⁹ for the synthesis of natural products and analogs, we report here such a strategy that leads stereoselectively to (-)-swainsonine (**1b**) and to the epimer (-)-2,8a-di-*epi*-swainsonine.

We have reported that acrylates of pyridines cannot be used as substrates in the Sharpless asymmetric aminohydroxylation (AA) due to poisoning of the osmium catalyst by the pyridine nitrogen.¹⁰ However, we demonstrated that the corresponding pyridine *N*-oxides **7** readily underwent this transformation, which was applied to the enantioselective synthesis of pyridine analogous side chains of paclitaxel. Recently, this strategy was taken up for the synthesis of (-)-lentiginosine (**1a**), using an asymmetric dihydroxylation of **7a** as the key step,¹¹ which prompts us to report our own results for the synthesis of swainsonine epimers.

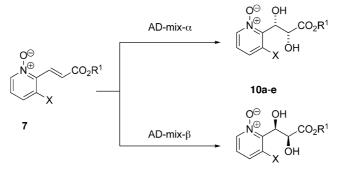

2. Results and discussion

Asymmetric dihydroxylations of pyridine N-oxides **7a–e**, which were readily prepared from pyridines **3** and **8**

Keywords: Indolizidines; Swainsonine; 2,8a-Di-*epi*-swainsonine; Pyridine-*N*-oxides; Asymmetric dihydroxylation.

^{*} Corresponding author. Tel.: +49 941 9434631; fax: +49 941 9434121; e-mail: oliver.reiser@chemie.uni-regensburg.de

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.10.086


Scheme 1. Reagents and conditions: (a) (i) NaOEt, ethanol; (ii) DMSO, (4a: benzyl chloride; 4b: methyl iodide), 28-39%. (b) SeO₂, dioxane, reflux, 83-84%. (c) LiBr, acetonitrile, NEt₃, (R¹O)₂POCH₂COOR¹, 62–84\%. (d) Glacial acetic acid, hydrogen peroxide (30%), 60 °C, 77–97\%. (e) LiBr, acetonitrile, NEt₃, (R¹O)₂POCH₂COOR¹, 62–86\%.

(Scheme 1), were investigated using commercially available AD-mix.

7a gave the desired dihydroxylated products **10a**, as recently reported,¹¹ or (*ent*)-**10a**, respectively, with high enantioselectivity, either by employing AD-mix- α or AD-mix- β (Table 1). Likewise, the alkoxy substituted *N*-oxides **7c** and **7d** could be converted to the corresponding diols with respectable yields, however, the enantioselectivity of the reaction was distinctively dependent on the

protecting group at the hydroxyl group in the 3-position on the pyridine ring: while the benzyloxy derivative 7c gave the diols 10c or (*ent*)-10c with only 53–66% ee, 7d, substituted with the smaller methoxy group gave rise to the diols 10d or (*ent*)-10d with excellent enantioselectivity. Switching from the ethyl to the isopropyl esters 7b and 7e considerably improved the yields by retaining the high selectivities (93–98% ee) of the dihydroxylation reaction due to the increased hydrolytic stability of the starting materials and products.

Table 1. Asymmetric dihydroxylation of 7 to 10a–e (AD-mix- α) or (*ent*)-10a–e (AD-mix- β)^a

(ent)-10a-e

	AD-mix-α		AD-mix-β	
	% ee	Yield (%)	% ee	Yield (%)
7a	97	39	96	36
7b	97	66	98	65
7c	53	55	66	59
7d	97	52	98	54
7e	97	93	93	72

^a Reagents and conditions: AD-Mix, MeSO₂NH₂, t-BuOH/H₂O, room temperature, 24-72 h.

Download English Version:

https://daneshyari.com/en/article/9563386

Download Persian Version:

https://daneshyari.com/article/9563386

Daneshyari.com