

Tetrahedron 61 (2005) 1715-1722

Tetrahedron

Incorporation of an indole-containing diarylbutylamine pharmacophore into furo[2,3-a]carbazole ring systems

Faye Maertens, Suzanne Toppet, Georges J. Hoornaert and Frans Compernolle*

Laboratorium voor Organische Synthese, K.U.Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Received 6 October 2004; revised 15 December 2004; accepted 21 December 2004

Available online 15 January 2005

Abstract—Due to concurrent oxidation of the indole moiety in the starting carbazole alkenol, an epoxidation route aiming at incorporation of a conformationally constrained diarylbutylamine failed to give the desired furo[2,3-a]carbazole ring system. Instead, an indole epoxide intermediate was generated, which underwent rearrangement involving participation of a vicinal OH group. The required furo[2,3-a]carbazole could, however, be accessed via a Hg²⁺-induced cyclisation of a carbazole alkynol.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, we reported the synthesis of various indeno-[1,2-b]furan, indeno[1,2-b]pyran, naphtho[1,2-b]furan and benzo[h]chromene ring systems 3 encompassing a conformationally constrained diarylbutylamine pharmacophore. This is a general approach for improving the binding affinity and selectivity of neurotransmitter ligands to receptor molecules. Specifically, these compounds can be viewed as constrained analogues of dopamine receptor ligands 1 and the antihistamine difenhydramine 2.

Since the indole moiety is an essential feature of many bioactive molecules, we conceived target structures of furo[2,3-a]carbazole type 4 as constrained analogues of 2-indolylbutylamines. Similar to the strategy used for the synthesis of tricycic compounds 3, our present approach (Scheme 1) involves regioselective opening of the epoxide ring in precursor 5 by the tertiary alcohol centre. This precursor in its turn may be derived from the 2-alkenyl substituted β -keto-ester 6 via sequential Grignard reaction and epoxidation.

2. Results and discussion

Our synthetic approach required the preparation of the carbazole alkenol precursor **12** (Scheme 2). An acid-catalysed ring closure of 3-indolebutyric acid afforded the

F

1

2

$$N_{R}^{CO_{2}Me}$$
 $N_{R}^{CO_{2}Me}$
 $N_{R}^{CO_{2}Me}$

Scheme 1.

six-membered ring ketone **8**,⁶ which was *N*-methylated to give compound **9**.^{7,8} β-Keto ester **10** was prepared by treatment of **9** with potassium hydride and dimethyl carbonate.⁹ Subsequent allylation gave the 2-allyl-1-oxo-1*H*-carbazole-2-carboxylate **11**, which was submitted to a Grignard reaction with freshly prepared PhMgBr. Following chromatographic purification alcohol **12** was isolated as the major diastereoisomer with a d.e. of 46%.

Keywords: Heterocyclic compounds; Epoxidation; Indole; Bromocyclisation.

^{*} Corresponding author. Tel.: +32 16 32 74 07; fax: +32 16 32 79 90; e-mail: frans.compernolle@chem.kuleuven.ac.be

Scheme 2. Reagents and conditions: (a) PPA, toluene, 110 °C; (b) KOH, MeI, acetone; (c) KH, (CH₃O)₂CO, reflux; (d) NaH, allyl bromide, DMF; (e) PhMgBr, THF, -78 °C.

A NOESY analysis of **12** reveals a *trans*-diaxial orientation of the phenyl and allyl groups. NOEs are observed between H-2' of the allyl group and both H-3eq and H-4ax. Proton H-1'b shows a NOE with H-4ax, while H-1'a correlates with the tertiary alcohol proton (see geometrically optimised conformation, Fig. 1). These findings confirm the (Ph, allyl) *trans*-diaxial relation of the major product, in agreement with our previous report regarding the diastereoselectivity of the Grignard reaction in similar systems. ¹⁰

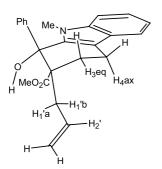


Figure 1. Geometrically optimised conformation of 12.

Alkenol 12 was submitted to reaction with *m*-chloroperbenzoic acid (MCPBA) but the two major products isolated from the reaction mixture clearly were not the expected epoxide or ring-closed product. Indeed, tetrahydrocarbazole derivatives have been reported to give 2,2-spiro-annulated 3-indolone products upon oxidation with MCPBA. Apparently, these 3-indolones are generated via a pinacol-type rearrangement, which involves a ring contraction of the 3-hydroxyindolium intermediate. ¹¹

Initially, we assumed that hydroxylation at the 3-position of the indole moiety of **12** would trigger a similar rearrangement of the cation intermediate **13** to form the spiro product **14** (Scheme 3). For both compounds the presumed spiro structure, however, was refuted based on the observation of three carbonyl signals in each of the ¹³C NMR spectra. This

finding suggested the existence of the ring-opened indolone structures **16** and **17**, which could be formed via an acid-catalysed *retro*-aldol reaction of β -hydroxy ketone **14**. The resulting enol intermediate **15** then would be converted into the corresponding ketone **16** or oxidized to yield the 2-OH product **17**.

Scheme 3. Initially suggested course of MCPBA oxidation.

Surprisingly, the HMBC spectra of the two indolone products revealed a correlation between the *N*-methyl protons (δ =3.17) and one of the carbonyl groups (δ =176.9). This finding clearly is not consistent with 3-indolone structures **16** and **17**, but rather with the analogous 2-indolone products **21** and **22**. Actually these 2-indolones also may be generated via initial epoxidation of the indole moiety to form epoxide **18** (Scheme 4).

Scheme 4. Actual course of MCPBA oxidation.

A further literature search indeed revealed that both 2- and 3-indolones can be generated upon epoxidation of 2,3-disubstituted indoles. ¹²⁻¹⁵ Instead of being converted to the stabilised 3-hydroxyindolium ion 13 (see Scheme 3 before), the protonated epoxide intermediate 19 is subject to an alternative ring cleavage process, which is assisted by the vicinal OH group. The resulting enol intermediate 20 is then

Download English Version:

https://daneshyari.com/en/article/9563570

Download Persian Version:

https://daneshyari.com/article/9563570

<u>Daneshyari.com</u>