

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 1281-1285

Tetrahedron Letters

Efficient synthesis of enantiomerically pure dihydropyrans

Bor-Cherng Hong,^{a,*} Zhong-Yi Chen,^a Arumugam Nagarajan,^a Kottani Rudresha,^a Vishal Chavan,^a Wei-Hung Chen,^a Yea-Fen Jiang,^a Shuo-Cang Zhang,^a Gene-Hsiang Lee^{b,†} and Sepehr Sarshar^c

> ^aDepartment of Chemistry, National Chung Cheng University, Chia-Yi 621, Taiwan, ROC ^bInstrumentation Center, National Taiwan University, Taipei 106, Taiwan, ROC ^cAuspex Pharmaceuticals, Inc. 1261 Liberty Way, Suite C, Vista, CA 92081-8356, USA

Received 8 November 2004; revised 22 December 2004; accepted 24 December 2004

Abstract—*cis*- and *trans*-2-Substituted-3,6-dihydro-2*H*-pyran-3-ols have been prepared via an aldol condensation/ring-closing metathesis/enzymatic resolution sequence. The process can be scaled up to yield gram quantities of enantiomerically pure material. © 2005 Elsevier Ltd. All rights reserved.

Dihydropyrans are essential structural motifs that make up the backbone of synthetic and naturally occurring ionophores and polymer macrolides.² They are also key intermediates in the synthesis of many complex marine toxins; for example, dihydropyran (1) is one of the building blocks in the multistep synthesis of brevetoxins and ciguatoxin fragments (Fig. 1).^{3,4} Dihydropyrans are typically prepared by Claisen rearrangement,⁵ anionic,⁶ cationic,⁷ radical,⁸ transition metal catalyzed,⁹ allylation-Prins,¹⁰ and hetero Diels–Alder¹¹ cyclizations.

The Grubbs ruthenium and Schrock molybdenum based ring-closing metathesis (RCM) reactions have started a renaissance in the preparation of carbocycles of various sizes.¹² The popularity of these technologies has led to the development of a variety of industrial processes, as well as to the advent of a recyclable polymer-supported catalyst¹³ and efficient chiral catalytic systems.¹⁴ Crimmins et al. recently reported an elegant synthesis of chiral dihydropyrans via an auxiliary-based asymmetric aldol condensation followed by an RCM reaction.^{15,16} As part of our program directed at the development of pharmaceutically active carbohydrate analogs, we needed a synthetic route that could provide gram quantities of enantiomerically pure *cis-* or *trans-*2-

substituted-3,6-dihydro-2*H*-pyran-3-ols from readily available starting materials.¹⁷ As such, we envisioned that a tandem racemic aldol condensation/RCM followed by an enzymatic resolution could provide an economic alternative to the aforementioned methodologies (Scheme 1).

Treatment of 4^{18} with LDA at -78 °C, followed by slow addition of acrolein afforded the threo and erythro hydroxy esters 5 as a 2:1 mixture of diastereomers, which reacted smoothly with Grubbs' catalyst in toluene to give racemic cis- and trans-dihydropyrans 6 and 7 (Scheme 2). A simple chromatographic separation of these diastereomers followed by incubation with a series of commercially available enzymes provided enantiomerically pure dihydropyrans (-)-6, (+)-7, (-)-8, and (-)-9 (Tables 1 and 2).¹⁹ Excellent resolution was achieved in many cases and the Amano PS-C-1 lipase showed the highest turnover rate.²⁰ Using this process, all four dihydropyran isomers (-)-6, (+)-7, (-)-8, and (-)-9 could be isolated in >99% ee. LiAlH₄ reduction of these dihydro-2H-pyran-2-carboxylic esters afforded the corresponding optically active dihydropyrandiols (+)-10, (+)-11, (-)-10, and (-)-11 (Scheme 3).^{21,22}

Dihydroxylation of ester (-)-8 (OsO₄, NMO, THF-*t*-BuOH, H₂O) afforded the diastereomeric triol isomers (+)-12 and 13 in a 6:1 ratio (Scheme 4). The same selectivity was observed for the dihydroxylation of (-)-6 to 14 and (-)-15. Alternatively, dihydroxylation of the esters (+)-7 and (-)-9 to the triols (+)-16 and (+)-17

Keywords: Aldol; Metathesis; Synthesis; Enzyme; Dihydropyran.

^{*} Corresponding author. Tel.: +886 52428174; fax: +886 52721040; e-mail: chebch@ccu.edu.tw

[†]See Ref. 1.

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.12.128

Figure 1. Selected synthetic applications of dihydropyrans.

Scheme 1.

Scheme 2.

Table 1. Enzymatic resolution of racemic- 6^{a}

	O CO ₂ Et		t Enzyme Toluene, vinyl acetate		+			
	Racemic-6			(-)-8			(-)-6	
Entry	Enzyme	Time (h)	% Ee _s ^b	Yield (-)-8 (%)	% Ee _p ^c	Yield (-)-6 (%)	E-Value
1	Altus 27	14	>99.5	47		95.3	49	>247
2	CHIRAZYME L-5	24	>99.5	47		88.5	48	>96
3	CHIRAZYME L-10	24	>99.5	48		98.8	47	>992
4	AMANO PS-C-1	4	>99.5	46		99.4	47	>1993

^a The reaction was monitored and stopped once 50% of the substrate was consumed.²⁴ Products were isolated by chromatography.

^b Ee_s: enantiomeric excess of alcohol (-)-6.

^c Ee_p : enantiomeric excess of acetate (-)-8.

Download English Version:

https://daneshyari.com/en/article/9564802

Download Persian Version:

https://daneshyari.com/article/9564802

Daneshyari.com