

Tetrahedron Letters 46 (2005) 959-962

Tetrahedron Letters

An efficient Pd(II)-based catalyst system for carboxylation of aromatic C–H bond by addition of a phosphenium salt

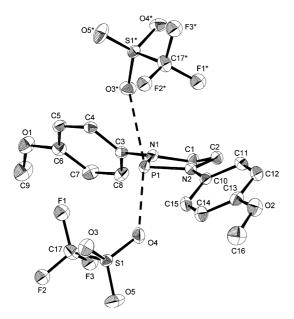
Ken Sakakibara, Makoto Yamashita and Kyoko Nozaki*

Department of Chemistry and Biochemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

Received 20 November 2004; revised 7 December 2004; accepted 8 December 2004

This article is dedicated to Professor Iwao Ojima on the occasion of his 60th birthday

Abstract—Addition of a phosphenium dramatically improved the reaction yields in the carboxylation of arenes by formic acid catalyzed by Pd(II). Control experiments revealed that the majority of the phosphenium triflate was converted to a mixed anhydride of phosphonic acid and formic acid (7), which however did not substitute for the phosphenium to improve the reaction yield. © 2004 Elsevier Ltd. All rights reserved.


Catalytic activation of aromatic C–H bonds leading to a new C-C bond formation is of considerable interest in organic synthesis.^{1–5} Compared with Friedel–Crafts reaction, it would provide simple, clean, and economic methods for making many useful substituted aromatic compounds directly from simple arenes. Fujiwara and co-workers developed the electrophilic substitution of an aromatic hydrogen atom by Pd(II) to produce an arylpalladium species.⁶ The arylpalladium was further allowed to react with CO,^{7–9} CO₂, ¹⁰ O₂, ^{11,12} alkenes, ^{13,14} alkynes, ¹⁵ and nitrile ¹⁶ to form aromatic carboxylic acids, phenols, alkylarenes, alkenylarenes, and ketones, respectively. Recently, Grushin reported similar carboxylation of arenes by Rh-based catalyst system.¹⁷ We recently reported the Pd-catalyzed carboxylation of aromatic C-H bonds by using formic acid as a carbonyl source (Eq. 1).¹⁸ Given that CO and CO₂ are gaseous, formic acid is more favorable for handling to produce aromatic carboxylic acids.¹⁹ Here we report an efficient catalyst system for carboxylation of aromatic C-H bond by using phosphenium salts as additives to achieve high yields in the Fujiwara-type carboxylation with formic acid as a carbonyl source.

Originally, phosphenium salts have been studied in comparison with its isoelectronic species, such as carbene and silylene since its discovery. 20-25 Phosphenium may behave as a σ -donor (Lewis base) and also as a π -acceptor (Lewis acid) due to the sp² lone pair electrons and a vacant p-orbital, respectively. In spite of their interesting properties, however, only few catalytic reactions by the use of phosphenium salts have been reported so far. 26,27 In fact, Baker showed his perspective²² that some reactions whose mechanisms include the cationic transition-metal complexes would be accelerated by using strong electron-withdrawing ligands, such as phosphenium ions. Baker's insight prompted us to use phosphenium salts for our Pd-catalyzed carboxylation (Eq. 1), whose key step is the electrophilic substitution of aromatic hydrogen atom by Pd(II). 18 The catalytic activity was improved by the addition of phosphenium ion but no evidence was obtained to support the formation of palladium-phosphenium complex.

Crystallographic study of phosphenium triflate 1 was carried out to confirm the geometry around the central phosphorus atom of 1.²⁸ Baker reported applications of phosphenium triflates for isolation of phosphenium-ligated rhodium²² and platinum²⁵ complexes. In their

Keywords: Electrophilic substitution; Phosphenium salt; Palladium; Carboxylation; Catalyst.

^{*}Corresponding author. Tel.: +81 3 5841 7261; e-mail: nozaki@chembio.t.u-tokyo.ac.jp

Figure 1. ORTEP drawing of phosphenium triflate 1 with the triflate anion of the other molecule. Dashed line is indicating the interactions between the central phosphorus atom and two oxygen atoms. (A minor part of disordered three fluorine atoms in triflate anion and hydrogens were omitted for clarity.)

reports, they suggested that the structure of phosphenium triflate 1 may consist of the weak coordination of the triflate to the phosphorus atom based on a previously reported structure of phosphenium triflate 1'.29 Single crystals suitable for X-ray analysis of 1 were grown from a toluene solution diffused with hexane at -30 °C under argon. As shown in Figure 1, solid state structure of 1 indicates that the central phosphorus atom has two kinds of weak interactions between the vacant p-orbital of cationic phosphorus and oxygen atoms of two triflate anions (P1-O4 = 2.4210(18) Å, P1-O3* = 2.8322(19) A where O3* is one of oxygen atoms of triflate anion in the other molecule) (Table 1) to form pseudo-trigonal bipyramidal structure with a remaining lone pair as the 5th substituent in the equatorial position. Thus, the weak coordination of the triflate to the central phosphorus atom, that is similar to 1',29 has been confirmed.

Table 1. Selected interatomic lengths (Å) and angles (°) of 1

P(1)-N(1)	1.628(2)	P(1)-N(2)	1.634(2)
P(1)-O(4)	2.4210(18)	P(1)-O(3*)	2.8322(19)
N(1)-C(1)	1.479(3)	N(2)-C(4)	1.485(3)
N(1)-P(1)-N(2)	93.74(10)	P(1)-N(1)-C(1)	114.01(16)
P(1)-N(2)-C(2)	114.32(16)	P(1)-N(1)-C(3)	122.47(16)
P(1)-N(2)-C(10)	124.64(16)	N(1)-P(1)-O(4)	93.48
N(2)-P(1)-O(4)	94.40	N(1)-P(1)-O(3*)	90.89
N(2)-P(1)-O(3*)	101.24		

Table 2. Optimization of conditions for carboxylation reaction^a

$$\begin{array}{c|c} \text{'Bu} & \text{Pd(OCOCF}_3)_2 & \text{'Bu} \\ \hline & 1 & \\ \hline & K_2S_2O_8 & \\ \text{CF}_3\text{COOH/(CF}_3\text{CO})_2\text{O} & \\ \text{HCOOH} & \\ \hline & 30 \text{ °C} & \\ \hline \end{array}$$

Run	1/Pd	Time (h)	Yield ^b (%)
1	_	48	18 ^c
2	0.55	24	32 ^c
3	1.1	24	69 ^c
4	2.2	24	22 ^c
5	3.3	24	24 ^c
6	1.1	48	84 ^d 22 ^{c,e}
7	1.1	48	22 ^{c,e}
8	1.1^{f}	48	2^{c}

^a 5 mol % Pd(OCOCF₃)₂. 1.5 equiv K₂S₂O₈, CF₃CO₂H/(CF₃CO)₂O solvent (10:1).

$$MeO - N_{P} N - OMe \xrightarrow{AgOTf} 1$$

For the carboxylation of arenes, the reaction conditions were optimized with/without phosphenium salt 1.30 According to our previous report, 18 arenes and formic acid were used as substrates in the presence of Pd-(OCOCF₃)₂ as a catalyst, K₂S₂O₈ as an oxidant, phosphenium salts as additive, and a mixture of CF₃COOH/(CF₃CO)₂O as a solvent. Results are summarized in Table 2. In the absence of the phosphenium additive, the carboxylated product was obtained in 18% yield in 48 h (run 1). The 1/Pd(OCOCF₃)₂ ratio was optimized in runs 2-5 and the highest yield of 69% in 24 h was achieved with 1.1 equiv of 1 to Pd (run 3). Longer reaction time of 48 h improved the yield up to 84% (run 6).31 The use of Pd(OAc)2 in place of Pd-(OCOCF₃)₂ caused the drop of the yield to 22% (run 7). Addition of chlorophosphine 2 instead of phosphenium 1 resulted in almost no reaction. Thus, in the following studies, the reaction condition of run 6 was chosen as the standard condition.

The scope and generality of this reaction have been explored by using various commercially available arenes (Table 3). The reaction exhibited good yields and gave no byproducts for benzene and alkyl-substituted benzenes although electron-poor arenes, such as benzonitrile, nitrobenzene, and α,α,α -trifluorotoluene, did not react at all. Benzene was converted to benzoic acid as a sole product in 53% yield (run 1). In the cases of monoand di-substituted arenes, carboxylation at the sterically less-hindered position took place predominantly (runs 2–5). Different steric factor of the alkyl group in the mono-substituted arenes did not affect the total yield of the carboxylated arenes, but did change the isomeric ratio of the products (runs 2 and 3). In the case of *m*-xylene, even sterically hindered C–H bond was activated

^b Sum of the two isomeric carboxylic acid (*metalpara* = 1:3).

^c Yields were determined by ¹H NMR using C₂H₄Cl₂ as an internal standard because of the presence of unseparable byproducts.

^d Isolated yield.

e Pd(OAc)2 was used.

f 2 was used instead of 1.

Download English Version:

https://daneshyari.com/en/article/9565937

Download Persian Version:

https://daneshyari.com/article/9565937

<u>Daneshyari.com</u>