


www.elsevier.com/locate/apsusc

Optical and structural studies of Langmuir–Blodgett films of polyalkoxystilbazole complexes of iridium(I)

J.E. Wong^{a,b,*}, B. Donnio^a, D.W. Bruce^c, T.H. Richardson^b

^aDepartment of Chemistry and Centre for Molecular Materials, University of Sheffield, Sheffield S3 7HF, UK

^bDepartment of Physics and Astronomy and Centre for Molecular Materials, University of Sheffield,

Hicks Building, Sheffield S3 7RH, UK

^cDepartment of Chemistry, University of Exeter, Exeter EX4 4QD, UK

Available online 6 January 2005

Abstract

Studies have been focused on Langmuir films of a family of iridium polyalkoxystilbazole metallo-organic complexes. We report that these polyalkoxystilbazole complexes form stable Langmuir monolayers on water as subphase, and are successfully transferred onto glass substrates for structural and optical characterisations using UV–vis spectroscopy. The area per molecule obtained for the polyalkoxystilbazole films is larger than that for the corresponding monoalkoxystilbazole films, and cannot simply be explained by the cross-sectional area of the Ir(CO₂)Cl headgroup, which is common to all of them. The length of the alkoxy chains as well as their position of substitution have an influence on the orientation of the molecules. © 2004 Elsevier B.V. All rights reserved.

Keywords: Langmuir; Langmuir–Blodgett; Organo-metallic; Stilbazole; Thin film

1. Introduction

The Langmuir–Blodgett technique (LB) [1] is a simple and effective way to prepare ultrathin films with a controlled thickness at a molecular size level and with well-defined molecular orientation. It is essential that materials to be deposited by the LB technique be soluble in an organic solvent but insoluble in water. Such molecules must have a

E-mail address: jewong@chem.tu-berlin.de (J.E. Wong).

correct amphiphilic balance of hydrophilic and hydrophobic regions. Materials for LB films can be tailor-made via the design of both the head and the tail groups. Organo-metallic materials [2] often exhibit novel and interesting properties, such as non-linear optics [3], liquid crystals, and pyroelectric devices [4–9]. The organo-metallic compounds studied in this paper are polar molecules of polyalkoxystilbazole complexes of iridium(I). Our group previously reported studies on the same family of organometallic complexes [10], except that they were monosubstituted. In the present work, we report on the preparation and characterisation of Langmuir films of a series of polyalkoxystilbazole complexes of

^{*} Corresponding author. Present address: Stranski-Labor, Technische Universität Berlin, Strasse des 17. Juni 112, 10623 Berlin, Germany. Tel.: +49 30 3142 4938; fax: +49 30 3142 6602.

iridium(I) by measuring surface pressure–area $(\pi - A)$ isotherms as well as UV–vis absorption spectroscopy.

2. Experimental

2.1. Materials

The synthesis of the polyalkoxystilbazole complexes of iridium(I) has been described elsewhere [11]. The chemical structures of the polyalkoxystilbazole complexes of iridium(I) and their abbreviations are shown in Fig. 1. To guide the reader through the different structures reported herein, we adopt the following nomenclature system. For the sake of simplicity, since the headgroup is identical for all the complexes, this will be simply referred to as Ir, the numbers between the brackets refer to the length of the alkoxy chains substituted, followed by the positions of the substitution.

2.2. Langmuir films

All isotherms were measured in a clean room class 1000 at room temperature (20–24 °C). Solutions of typical concentration $5.0 \times 10^{-4} \, \text{mol l}^{-1}$ in chloroform were prepared and a known volume, typically $100–150 \, \mu l$, spread on the air–water interface. The spreading was performed by means of a microsyringe

in such a way as to leave small droplets on the subphase, with each successive drop being as far away possible from the previous one, and the complete spreading carried out over a period of time of around 4–5 min. A fan was switched on for about 30 min to assist the evaporation of the spreading solvent. Prior to each experiment, the fan was switched off. The trough was placed in a house-made cabinet to minimise dust exposure. Formation of the air–water monolayer was carried out in a Langmuir trough of constant perimeter supplied with an electronic balance, which uses a Wilhelmy plate as the pressure sensor. Isotherms were produced by reducing the surface area available to the materials at a constant slow rate of 5 cm² s⁻¹.

3. Results and discussion

3.1. Surface pressure–area $(\pi - A)$ isotherms

Fig. 2 shows the π –A isotherms for the polyalk-oxystilbazole complexes of iridium(I). Equilibrium-spreading pressures of the polyalkoxystilbazoles on the subphase were measured, and the almost constant value of pressure attained over 3–8 h shows that they form very stable Langmuir films. At very slow rate of compressions, the molecules are allowed to reorganise themselves on the water surface, and thus, the isotherms obtained indicate the true average behaviour

 $Fig.\ 1.\ Chemical\ structures\ of\ polyalkoxystilbazole\ complexes\ of\ iridium (I).$

Download English Version:

https://daneshyari.com/en/article/9567075

Download Persian Version:

https://daneshyari.com/article/9567075

Daneshyari.com