Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/01694332)

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

Size effect of Pt co-catalyst on photocatalytic efficiency of $g - C_3N_4$ for hydrogen evolution

Yunqing Zhu^{[a](#page-0-0),[b](#page-0-1),}*, Tian Wang^a, Tao Xu^{[c,](#page-0-3)}*, Yingxuan Li^a, Chuanyi Wang^{a,}*

^a School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China b Zhejiang Wenzhou Research Institute of Light Industry, Wenzhou 325804, PR China

c
Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy. DeKalb, IL 60115-2828, USA

mance.

1. Introduction

Photocatalytic water splitting to produce hydrogen fuel by harnessing sunlight holds particular promise as the process is economic and environmentally friendly $[1,2]$. TiO₂ is the most widely investigated photocatalyst [\[3\]](#page--1-1), but the wide–band gap and limited optical absorption restricted its practical application $[4,5]$. To develop the optimal photocatalysts being adequately efficient, earth abundant, stable, nontoxic and capable of harvesting visible light is still a major issue for photocatalytic water splitting [\[6\]](#page--1-3).

 $g - C_3N_4$ consisted by tri-s-triazine units has been considered as a metal-free photocatalyst [\[7](#page--1-4)–9], which can be synthesized via a simple poly-condensation method with different cheap N-rich precursors [\[10\]](#page--1-5). The g-C₃N₄ exhibits a medium band gap (Eg \approx 2.7 eV), high stability and "earth-rich" nature. All these excellent properties make $g-C_3N_4$ an outstanding photocatalyst under visible light irradiation. The $g-C_3N_4$ has been successfully used in photocatalytic water splitting since its band energy is high enough for photocatalytic H_2 evolution [\[11,12\]](#page--1-6). Nevertheless, pristine $g-C_3N_4$ used as a main catalyst cannot achieve a high efficiency for water splitting [\[13,14\]](#page--1-7), because the fast recombination speed of photogenerated charges, and low electronic conductivity restrict its photocatalytic efficiency for hydrogen production [\[15\].](#page--1-8) Hence, various approaches have been proposed to overcome these glitches [16–[19\]](#page--1-9), including design of heterojunctions, metallic and non-metallic doping, construction of C or N defects, and morphology control. Among the abovementioned approaches, the choice of noble metals as co-catalyst is a key remedy [\[20,21\]](#page--1-10). Pt is the most efficient co-catalyst to enhance the charge separation in the photocatalytic process [22–[24\].](#page--1-11) However, the present morphology of Pt cocatalyst is the most important issues that affect the photocatalytic efficiency [\[25\]](#page--1-12). It was known that the size reduction of Pt cluster will cause (1) an increase of low-coordination environment of metal centers $[26]$, (2) quantum size effects $[27]$, and (3) strong metal-support interactions [\[28\]](#page--1-15), especially when the Pt size is reduced to single atom [\[29\]](#page--1-16).

Inspired by the abovementioned excellent works, we prepared Pt modified $g - C_3N_4$ materials with different Pt contents and the effect of Pt size (from single atom to clusters) on the photocatalytic H_2 evolution was studied systematically. The $\mathrm{Pt_{0.1}\text{-}CN}$ sample (loading with 0.1 wt% Pt), in which the Pt species was characterized as Pt single atoms, displayed the highest photocatalytic H_2 evolution performance (473.82 µmol mg−¹ pt) under visible light irradiation among the Pt modified $g-C_3N_4$ materials with different Pt contents. We demonstrated that the remarkably increased photocatalytic performance of $Pt_{0.1}$ -CN was mainly ascribed to the synergistic effect of high light adsorption efficiency, effective charge separation, and high dispersed active sites of

<https://doi.org/10.1016/j.apsusc.2018.09.061> Received 19 June 2018; Received in revised form 5 September 2018; Accepted 7 September 2018 Available online 08 September 2018

0169-4332/ © 2018 Elsevier B.V. All rights reserved.

**Applied
Surface Scienc**

[⁎] Corresponding authors at: Weiyang University Park, Xi'an, Shaanxi 710021, China (Y. Zhu). E-mail address: zhuyunqing@sust.edu.cn (Y. Zhu).

Fig. 1. Aberration- corrected-STEM images of Pt_{0.1}-CN (a) and HRTEM of Pt_{0.3}-CN (b), Pt₁-CN (c), Pt₂-CN (d), Pt₃-CN (e).

Pt atoms.

2. Experimental

2.1. Materials synthesis

First, the $g-C_3N_4$ powder was fabricated by poly-condensation method with urea as precursor which is consistent with previous report [\[30\]](#page--1-17). Typically, urea (10 g) was added in to a covered crucible and sintered at 550 °C with a heating rate of 3 °C/min for 4 h, then the muffle was cooled to 250 °C, and again heated to 550 °C and hold for 2 h.

Second, g-C₃N₄ powder (0.50 g) was dispersed in H₂O (400 mL) and treated by a 100 W ultrasonic crasher for 60 min to obtain a $g - C_3N_4$ /

 $H₂O$ suspension. Pt/g-C₃N₄ catalysts were fabricated by in situ photoreduction of $H_2PtCl_6·6H_2O$. In detail, $H_2PtCl_6·6H_2O$ aqueous solution $(1 \times 10^4 \,\text{mg/L})$ was added drop-wise into the above g-C₃N₄/H₂O suspension, and irradiated under visible light (λ > 420 nm) for 4 h. After washing and drying, the final products were labeled as Pt_X-CN , where x represents the actual mass percentage of Pt in the products.

2.2. Characterization

Aberration-corrected-STEM (ac-STEM) was performed on a JEM-ARM300F at an accelerating voltage of 60 kV. High resolution transmission electron microscopy (HRTEM) images were recorded on a JEOL-JEM 2010 electron microscope. X-ray diffraction (XRD) characterization was performed using a D/max2200PC diffractometer via Download English Version:

<https://daneshyari.com/en/article/9569615>

Download Persian Version:

<https://daneshyari.com/article/9569615>

[Daneshyari.com](https://daneshyari.com)