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Abstract

We investigate 2d Ising spin glasses with binary couplings via exact computations of the partition function on lattices with periodic

boundary conditions. After introducing the physical issues, we sketch the algorithm to compute the partition function as a polynomial with

integer coefficients. This technique is then exploited to obtain the thermodynamic properties of the spin glass. We find an anomalous low

temperature scaling of the heat capacity cv ~ e
�2b and that hyperscaling holds.
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1. The model

The Ising model (with ferromagnetic interactions Jij=1

and its translational symmetry) can be seen as a first

approximation of real systems where there are impurities.

Considering disordered systems (more specifically, we shall

deal with spin glasses) can be seen as a further step that

increases the complexity: translational invariance is explic-

itly broken by the quenched disorder, and frustration

appears through the competition of ferromagnetic and

anti-ferromagnetic bonds:

Hu�
X
ij

JijSiSj: ð1Þ

Here the couplings Jij are chosen from some symmetric

distribution, for example a Gaussian distribution, or a

bimodal distribution in which case Jij=F1; thus, the last

case is referred to as the binary coupling case.

The typical approach of theoretical physics is to try

to simplify situations that we know to be very complex,

involving for example a huge number of degrees of

freedom. One thus introduces models that can describe the

macroscopic characteristics of the system without all the

microscopic details. Then one wants to know whether one

has a phase transition with the correct features, what is the

nature of the critical behavior, what are the exponents that

govern it. . .
A typical starting point is mean field theory. In the case

of spin glasses, mean field theory has been solved [1] and it

unveils a very complex structure in phase space (involving

at low temperatures T, the so-called Replica Symmetry

Breaking, RSB). What happens in finite dimensions remains

controversial in spite of many years of work [2]. One

expects the upper critical dimension to be 6, and the lower

critical dimension to be close to 2.5: in three dimensions, we

are very confident that there is a phase transition.

One wants to understand whether a spin glass phase

(with a frozen state with no spontaneous magnetization)

exists, and what happens as one gets close to the critical

temperature Tc. One of the possible approaches to under-

stand these systems is to compute directly what happens at

T=0 by studying the ground state and excited states of the

system.

Following the McMillan renormalization approach [3],

the domain wall energy, that is the difference of ground-state
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energies with periodic and anti-periodic boundary condi-

tions, corresponds to the effective interaction of block spins

at the scale L of the lattice size:

DE ¼ Ep � EafLh; JfJLh:

A first (slightly naive) classification says that depending on

the sign of the exponent h the system belongs to one of three

different classes:

! hN0: the interaction becomes stronger at large distance,

the thermal fluctuations are irrelevant and the frozen

phase exists also at finite temperature;

! hb0: the thermal fluctuations destroy the spin glass order

at any non-zero temperature;

! h=0: marginal behavior: the system is at its lower critical

dimension, suggesting that the correlation length grows

exponentially.

For the Ising spin glass in 2d with a Gaussian distribution

of the disorder, the domain-wall exponent is negative

(hc�0.29), and the spin glass phase does not survive at

non-zero temperature. For the case of the bimodal distribu-

tion in 2d, h=0. Following the classification we have given,

this suggests that Ising spin glasses with two different

realizations of the disorder (different microscopic character-

istics) may belong to two different classes; then the

microscopic characteristics would influence the critical

behavior of the system.

This conclusion should hold if h=0 is really a complete

signal of being at the lower critical dimension for the

system. But is that true? If we look for example at a class of

Migdal–Kadanoff approximations, for the case of the

bimodal distribution, h is equal to zero for all dimensions

below or equal to the lower critical dimension (see Fig. 1);

so, in this case, the fact that h=0 does not imply that one is

at a lower critical dimension [4].

2. The heat capacity of the FJ spin glass

The best way to check what happens in our two

dimensional spin glass is to look at the scaling of the

correlation length close to the critical temperature. When

hb0, the McMillan scaling picture shows that n(T)~T1/h as

TY0. The thermal exponent m is thus given by m=�1/h.
This conclusion is fine (and is confirmed [11]) for the Ising

spin glass with Gaussian couplings (hc�0.29). But in the

case of the FJ spin glass, h=0, and so the expectation there

is that n diverges faster than any inverse power of T as

TY0. A likely behavior is that the correlation length grows

exponentially in 1/T.

Unfortunately looking directly at the correlation length

can be cumbersome. Using Monte Carlo simulations, it is

possible get all the information about configurations and

energies, but the problem is equilibration at very low T

(since Tc=0). A different possible approach is the calculation

of the whole partition function: in this way, we can escape

the problem of equilibration, but we do not have any

information about the microscopic configurations of the

elementary variables, and we have to rely on the measure-

ment of some other thermodynamic quantity.

When calculating the partition function, we determine the

degeneracy of all energy levels of the system: from that it is

very easy extract the heat capacity cv or other observables like

the entropy. From these data we shall perform extrapolations

to get the behavior in the thermodynamic limit.

The 1988 work by Wang and Swendsen [5] gives some

information about the low T scaling of the heat capacity.

Using an optimized Monte Carlo, they concluded that the

scaling of cv is banomalousQ, in the sense that cv scales for

low T as e�2bJ, even though the energy gap is 4J. Indeed, in

standard systems, if DE=E1�E0 is the lowest excitation

energy (the gap), cv goes as e
�BDE.

A possible explanation of this anomalous scaling may be

found by looking the case of the one-dimensional (pure)

Ising model. The pure Ising model has a marginal behavior

in 1d, its lower critical dimension. For the finite size system

with periodic boundary conditions at fixed volume and

very low T, cv goes as e�4bJ, since the minimum energy

excitation is 4J (see Fig. 2).

In Fig. 2 the lower lines are for spins Si=�1, while the

upper line is for spins Si=+1. Starting from the ground state,

if we want to flip spins and make a minimum energy

excitation, because of the periodic boundary conditions, this

minimum energy excitation has always an energy cost equal

to 4J (2J on the left, when the lower line jumps to the upper,

and 2J on the right when the upper line jumps to the lower).

If we look to the 1d pure Ising model with free boundary

conditions, the minimal energy excitation is 2J, and

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5 3 3.5 4

θ 
(d

)

 d 

BINARY
GAUSSIAN

Fig. 1. The exponent h in a family of Migdal–Kadanoff models defined for

continuous dimensions d: note the difference between the Gaussian (5) and

binary (x) models.

Fig. 2. A kink–antikink pair excitation when using periodic boundary

conditions.

J. Lukic et al. / Biophysical Chemistry 115 (2005) 109–114110



Download	English	Version:

https://daneshyari.com/en/article/9573556

Download	Persian	Version:

https://daneshyari.com/article/9573556

Daneshyari.com

https://daneshyari.com/en/article/9573556
https://daneshyari.com/article/9573556
https://daneshyari.com/

