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Abstract

Using exact diagonalization techniques, we study the dynamical response of the anisotropic disordered Heisenberg model for systems of

S=1/2 spins with infinite range random exchange interactions at temperature T=0. The model can be considered as a generalization, to the

quantum case, of the well-known Sherrington–Kirkpatrick classical spin glass model. We also compute and study the behavior of the

Edwards Anderson order parameter and energy per spin as the anisotropy evolves from the Ising to the Heisenberg limits.
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Many real materials display a spin glass phase at low

enough temperature. This exotic state is characterized by a

frozen configuration of local magnetic moments following a

random spatial pattern, in such a way that no net macro-

scopic magnetization is produced.

The manifestations of this state were first observed in the

seventies in systems with magnetic impurities in a metallic

host (examples are Cu–Mn, Ag–Mn, Au–Mn and Ag–Mn).

There the magnetic moments experiment long-range RKKY

interactions, but spin glass behavior was also subsequently

observed in the insulating compound EuxSr1�xS with

competing ferromagnetic and random antiferromagnetic

exchange interactions [1]. More recently, spin glass phases

have also been observed in the bi-layer kagome SrCr8Ga4O19

[2], in the pyrochlore structure LixZn1�xV2O4 [3], in the

dipolar magnet LiHoxY1�xF4 [4] and in the enigmatic high

Tc compounds La1�xSrxCu2O4 [5].

Competing interactions and frustration in combination

with randomness have been identified as the basic ingre-

dients to drive a system towards a glassy state. While the

concept of spin is purely quantum, it is usually stated that

quantum fluctuations are not important to describe the spin

glass physics. However, the relevance of quantum effects is

beginning to be identified and emphasized in experimental

[6–9] and theoretical work [10–13].

Exact diagonalization (ED) techniques proved to be very

useful and efficient to investigate the dynamical properties

of strongly correlated systems in general [5]. In recent

works, we showed that it is also a useful method to deal with

quantum random spin systems with long-range interactions,

such as the Ising model with random exchange interaction in

the presence of a transverse and longitudinal magnetic fields

[10] and the random Heisenberg model [11]. Most of the

analytical and numerical methods to study this kind of

systems rely on the so-called replica-trick. Unfortunately,

this clever technique becomes usually impractical within the

glassy phase, where replica symmetry breaking occurs. As

ED does not use replicas, this technical difficulty is not

encountered, and the paramagnetic and glassy phases can be

studied in the same way. Another appealing feature of ED is

that it allows for the direct calculation of the dynamical

response on the real frequency axis. In this way, it

circumvents the uncertainties related to the analytical

continuation procedures which are usually needed in

quantum Monte Carlo simulations [14]. Finally, another
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important advantage of ED is the possibility of gaining

insight on the nature of the low energy excitations. The price

to pay is that only small systems are amenable to be treated

within the available computer power. However, at least for

the case of models with infinite range interactions, in most

of the cases, the relevant physical quantities were found to

extrapolate smoothly to the thermodynamic limit and a

consistent description of the different phases has been

possible [10,11].

In this work, we present results on the behavior of the

anisotropic Heisenberg model for a system of N spins with

S=1/2 and random infinite-range exchange interactions. The

Hamiltonian reads,
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where i, j label the sites of the fully connected lattice and the

interactions Ji, j are normally distributed with variance J2

that we set to unity. The parameter a labels the degree of

anisotropy interpolating between the classical Sherrington–

Kirpatrick (SK) model for a=0 and the Heisenberg model

for a=1. This model has a rather close experimental

realization in the above mentioned LiHoxY1�xF4 [4]

compound in the limit of small magnetic ion concentration

x, which is dominated by random exchange interactions.

The magnetic interaction in this system is strongly

anisotropic [8]. We calculate the different components of

the local dynamical susceptibility, defined as
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where m denotes the number of realizations of disorder and

l=x, y, z. The state jU0
(m)i is the ground state of the

Hamiltonian H(m), defined for the mth realization of Jij and

it is calculated by recourse to Lanczos algorithm. The

evaluation of the spectral functions vlU (x)=�2Im[vl
loc(x)]

is achieved by using a continuous fraction representation of

the dynamical response functions [5]. We perform averages

over a number of realizations of disorder between M=3000

for the largest systems (N=15 spins) to M=100,000 for the

smallest ones (N=8 spins).

Let us first summarize the main properties of the spectral

function in the limit a=1 (usual Heisenberg model) where

the three components of the susceptibilities coincide

[10,11]. This is shown in Fig. 1. Four different contributions

to the dynamical response can be distinguished:

vW
z

xð Þ ¼ Kd xð Þ þ vWlow xð Þ þ vWhigh xð Þ þ vWreg xð Þ ð3Þ

The pure delta-function of the first term is a consequence

of the SU(2) rotational invariance of the Hamiltonian in this

limit. This response is due to a bsoft modeQ present in

disorder realizations with total Sp0 which have 2S+1 fold

degenerate ground states. A close analysis of the finite size

effects on the average magnetization per site indicates that

bSN/NY0 as the size of the system evolves to the

thermodynamic limit. Hence, this contribution to the spin

response is expected to vanish as N increases.

The analysis of the low frequency feature vlowU (x) as N

grows reveals that this contribution of the spectral function

gets sharper, evolving towards a function ~d(x). Its origin

has been associated to slow coherent excitations of many-

spin states which eventually become frozen. These states

bear some resemblance to the magnons of the model without

disorder. In fact, by examination of the structure of the

ground-state in typical realizations of disorder, one finds

that these excitations are built-up on a ground state whose

wave function has large amplitudes on just a few config-

urations (out of the 2N states) corresponding to unfrustrated

sub-clusters, i.e., a sub-set of spins that are in a config-

uration that is compatible with the sign of the random Jij
bonds. Such configurations appear in pairs together with

their time-reversal counterparts, having the same weight in

the ground-state wave function and some relative sign that

depends on the total S of the ground state. The wave

functions of excited states that contribute to vlowU (x) also

have a large weight on the unfrustrated clusters where the

pairs of configurations appear with the opposite relative sign

with respect to the ground state. The typical energy scale for

these lowest energy excitations is O( J=N). The high-energy

part vhighU (x) is a small contribution with the form of a mild

hump which is produced by excitations generated from the

unbinding of single spins out of the unfrustrated clusters, the

classical picture being a precession of individual spins

around the effective quasistatic local field of the remaining

frozen ones (of the unfrustrated sub-cluster). It is remarkable

that the three abovementioned features, which are the

consequence of some kind of magnetic order, are mounted

on a broad and large background vregU (x) that remains

almost unaffected as the size of the system increases. This

piece of the response has been identified as due to

incoherent excitations.
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Fig. 1. The spectral function vzU (x) for the Heisenberg model (a=1) in a

system of N=14 spins. The arrows indicate contributions from different

kind of excitations (see text).
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