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Abstract

Using exact diagonalization techniques, we study the dynamical response of the anisotropic disordered Heisenberg model for systems of
S=1/2 spins with infinite range random exchange interactions at temperature 7=0. The model can be considered as a generalization, to the
quantum case, of the well-known Sherrington—Kirkpatrick classical spin glass model. We also compute and study the behavior of the
Edwards Anderson order parameter and energy per spin as the anisotropy evolves from the Ising to the Heisenberg limits.
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Many real materials display a spin glass phase at low
enough temperature. This exotic state is characterized by a
frozen configuration of local magnetic moments following a
random spatial pattern, in such a way that no net macro-
scopic magnetization is produced.

The manifestations of this state were first observed in the
seventies in systems with magnetic impurities in a metallic
host (examples are Cu—Mn, Ag—-Mn, Au—Mn and Ag-Mn).
There the magnetic moments experiment long-range RKKY
interactions, but spin glass behavior was also subsequently
observed in the insulating compound Eu,Sr;_,S with
competing ferromagnetic and random antiferromagnetic
exchange interactions [1]. More recently, spin glass phases
have also been observed in the bi-layer kagome SrCrgGa 019
[2], in the pyrochlore structure Li,Zn;_,V,04 [3], in the
dipolar magnet LiHo, Y, _,F4 [4] and in the enigmatic high
Tc compounds La;_,Sr,Cu,0y4 [5].

Competing interactions and frustration in combination
with randomness have been identified as the basic ingre-
dients to drive a system towards a glassy state. While the
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concept of spin is purely quantum, it is usually stated that
quantum fluctuations are not important to describe the spin
glass physics. However, the relevance of quantum effects is
beginning to be identified and emphasized in experimental
[6-9] and theoretical work [10—13].

Exact diagonalization (ED) techniques proved to be very
useful and efficient to investigate the dynamical properties
of strongly correlated systems in general [5]. In recent
works, we showed that it is also a useful method to deal with
quantum random spin systems with long-range interactions,
such as the Ising model with random exchange interaction in
the presence of a transverse and longitudinal magnetic fields
[10] and the random Heisenberg model [11]. Most of the
analytical and numerical methods to study this kind of
systems rely on the so-called replica-trick. Unfortunately,
this clever technique becomes usually impractical within the
glassy phase, where replica symmetry breaking occurs. As
ED does not use replicas, this technical difficulty is not
encountered, and the paramagnetic and glassy phases can be
studied in the same way. Another appealing feature of ED is
that it allows for the direct calculation of the dynamical
response on the real frequency axis. In this way, it
circumvents the uncertainties related to the analytical
continuation procedures which are usually needed in
quantum Monte Carlo simulations [14]. Finally, another
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important advantage of ED is the possibility of gaining
insight on the nature of the low energy excitations. The price
to pay is that only small systems are amenable to be treated
within the available computer power. However, at least for
the case of models with infinite range interactions, in most
of the cases, the relevant physical quantities were found to
extrapolate smoothly to the thermodynamic limit and a
consistent description of the different phases has been
possible [10,11].

In this work, we present results on the behavior of the
anisotropic Heisenberg model for a system of N spins with
S§=1/2 and random infinite-range exchange interactions. The
Hamiltonian reads,
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where 7, j label the sites of the fully connected lattice and the
interactions J; ; are normally distributed with variance J*
that we set to unity. The parameter o labels the degree of
anisotropy interpolating between the classical Sherrington—
Kirpatrick (SK) model for =0 and the Heisenberg model
for a=1. This model has a rather close experimental
realization in the above mentioned LiHo,Y,_.F; [4]
compound in the limit of small magnetic ion concentration
x, which is dominated by random exchange interactions.
The magnetic interaction in this system is strongly
anisotropic [8]. We calculate the different components of
the local dynamical susceptibility, defined as
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where m denotes the number of realizations of disorder and
u=x, y, z. The state |®{™) is the ground state of the
Hamiltonian H, defined for the mth realization of J;; and
it is calculated by recourse to Lanczos algorithm. The
evaluation of the spectral functions ¥/, ()=—2Im[y ()]
is achieved by using a continuous fraction representation of
the dynamical response functions [5]. We perform averages
over a number of realizations of disorder between M=3000
for the largest systems (V=15 spins) to M=100,000 for the
smallest ones (N=8 spins).

Let us first summarize the main properties of the spectral
function in the limit #=1 (usual Heisenberg model) where
the three components of the susceptibilities coincide
[10,11]. This is shown in Fig. 1. Four different contributions
to the dynamical response can be distinguished:
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The pure delta-function of the first term is a consequence
of the SU(2) rotational invariance of the Hamiltonian in this
limit. This response is due to a “soft mode” present in
disorder realizations with total S#0 which have 25+1 fold
degenerate ground states. A close analysis of the finite size
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Fig. 1. The spectral function y” (w) for the Heisenberg model (¢=1) in a
system of N=14 spins. The arrows indicate contributions from different
kind of excitations (see text).

effects on the average magnetization per site indicates that
<§>/N—0 as the size of the system evolves to the
thermodynamic limit. Hence, this contribution to the spin
response is expected to vanish as N increases.

The analysis of the low frequency feature yi,, (@) as N
grows reveals that this contribution of the spectral function
gets sharper, evolving towards a function ~d(w). Its origin
has been associated to slow coherent excitations of many-
spin states which eventually become frozen. These states
bear some resemblance to the magnons of the model without
disorder. In fact, by examination of the structure of the
ground-state in typical realizations of disorder, one finds
that these excitations are built-up on a ground state whose
wave function has large amplitudes on just a few config-
urations (out of the 2" states) corresponding to unfrustrated
sub-clusters, i.e., a sub-set of spins that are in a config-
uration that is compatible with the sign of the random J;;
bonds. Such configurations appear in pairs together with
their time-reversal counterparts, having the same weight in
the ground-state wave function and some relative sign that
depends on the total S of the ground state. The wave
functions of excited states that contribute to yi,. () also
have a large weight on the unfrustrated clusters where the
pairs of configurations appear with the opposite relative sign
with respect to the ground state. The typical energy scale for
these lowest energy excitations is O(J=N). The high-energy
part yhign(®) is a small contribution with the form of a mild
hump which is produced by excitations generated from the
unbinding of single spins out of the unfrustrated clusters, the
classical picture being a precession of individual spins
around the effective quasistatic local field of the remaining
frozen ones (of the unfrustrated sub-cluster). It is remarkable
that the three abovementioned features, which are the
consequence of some kind of magnetic order, are mounted
on a broad and large background jy.. () that remains
almost unaffected as the size of the system increases. This
piece of the response has been identified as due to
incoherent excitations.
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