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Abstract

Inversion of positron lifetime spectrum is performed via genetic algorithms considering a simulating counting of positron anni-
hilation. Preliminary analysis without the inclusion of noise and for only one run produced large oscillations for the second peak in
the inverted spectrum. An alternative strategy was proposed to reduce the oscillations that produced an average error of 0.03%. A
maximum error of 40% was considered in the simulated data that produced a random average error of 10% in the counting data.
The final inverted spectrum considering this error is in reasonable agreement with the exact result, producing a relative error of 2%.
� 2005 Elsevier B.V. All rights reserved.

1. Introduction

Properties of a specified system can be, in principle,
extracted from experimental data such as lifetime spec-
tra of positron [1–3]. The inversion strategy based on
trial-and-error consists of considering filters and the
applications of least-squares methods. Particularly,
these types of methods are applied for experimental
spectroscopic data [3] or for fitting potential energy
functions to describe molecular systems [4–8]. However,
the ill-posed condition usually arises in signal processes
as investigated by Sellone and Falletti [9] or in spectro-
scopic data [10] and the inversion procedure may not be
consistent, for example, through least-squares methods.
Therefore, special techniques are applied to carry out
the inversion, for example, singular-value decomposi-
tion (SVD) or Tikhonov regularization approaches
[11,12]. These types of methods have recently been used
to analyze several chemical problems [13–15].

Alternative methodologies based on artificial intelli-
gence have also been used to tackle chemical problems
where there are ill-posed conditions [16–18]. Particu-
larly, Hopfield neural network has been recently applied
to recover the spherical potential energy function from
second virial coefficient experimental data [17] and pos-
itron lifetime spectrum [19]. In both cases, the inversions
are well characterized as ill-posed problems. The results
were quantitative compared against the data assumed as
experimental measurements. However, as pointed out in
[19] it was necessary to truncate the inverted solution
obtained through the Hopfield network due to negative
results.

An alternative methodology that has been widely
used to optimize several types of problems and particu-
larly very efficient for determining atomic and molecular
structures of clusters is called genetic algorithm (GA)
[20–24]. Although the genetic algorithm has shown to
be very efficient to determine accurately lowest atomic
and molecular energies for the best structures found
[20,21], it has not been applied for inverting experimen-
tal spectra. Alternatively, GAs have recently been used
to analyze ill-posed problems. For example, Mera
et al. [25] proposed a multi-population GA to analyze
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its efficiency in order to minimize Tikhonov functionals
and the results were equivalent to those calculated by
Tikhonov. Similarly, Montero used GAs to study opti-
mal control problems [26] and found that GAs are
robust tools for global optimization either for linear or
non-linear cases.

Particularly, dealing with chemical problems, Elliott
et al. [27] showed that the GA methodology can be effi-
cient to optimize the reaction rate parameters. However,
the analysis based on GA approach has not been done in
the case of dealing with chemical spectroscopic data that
can be characterized as ill-posed problems, with especial
attention to positron lifetime spectrum. The present work
is therefore concerning with the use of genetic algorithms
for inverting positron annihilation lifetime spectrum. The
analysis is performed considering a simulating counting
of positron annihilation with and without noises.

2. Genetic algorithm methodology

Genetic algorithms can be defined as adaptive heuris-
tic search methods based on natural evolutionary pro-
cesses. Mathematical genetic operators are constructed
and the basic operators are mutation, crossover and nat-
ural selection. The operations are performed to better
estimate the solution of a specified problem and are then
evaluated through a specified fitness function. The ap-
proach is repeated until a desired convergence is
achieved. In general, one requires that GAs can find glo-
bal minima, however, it may not find the best solution
but more often the method comes up with a partially
optimal response which is generally accepted as global
minimum [21,28]. Therefore, due to the nature of GA
approach, it may be efficient to solve problems with
rank deficiency as shown for several ill-posed problem
studies [25–27,29]. However, the method needs to be
tested for chemical problems such as the inversion of
positron annihilation lifetime spectrum.

The present work does not intend to introduce a new
GA method with new operators as previously proposed
[21]. In contrast, it deals with the application of GA to
invert the positron lifetime spectrum and hence a simple
GA as described by Goldberg [30] is applied. The pro-
posed analysis via GA is performed considering a prob-
lem with 16 and 32 data that define the annihilation rate
probability and the counting of positron annihilation
(assumed as the experimental measurement). The prob-
lem therefore consists of optimizing 16 or 32 data via
GA. Both cases are ill-posed although a higher rank
deficiency is found for 32 data and we will return to this
point later. The first step on the application of GA is
performed by defining the initial population of 100 indi-
viduals. There are several ways for creating an initial
population and here a random initialization is done
based on the work of Park and Miller [31]. This popula-

tion is binary encoded with 80 bits for the variables to be
optimized. Mating is carried out for the selected individ-
uals by adopting the standard stochastic universal sam-
pling as described in the literature [30,32–34]. A rate of
70% is considered and the best individuals are selected
for the crossover operation similar to that applied in
[21] although a single-cut procedure is employed [35].
A random position of a representative individual of each
parent is cut (single) and then mating is carried out to
generate new individual. The latter operation is per-
formed to the whole population and then ranked
according to the objective function used. A low rate
mutation (7%) is used to avoid stagnation or premature
convergence. Finally, the new offspring is included in the
population considering an elitist strategy and hence best
solution can never be lost. This will avoid oscillations in
the annihilation rate probability providing a more effi-
cient strategy for inverting the spectrum.

The standard stochastic universal sampling used in
this work is written as

F ðfiÞ ¼
gðfiÞP
igðfiÞ

; ð1Þ

where g(f) defines the objective function given by

gðf Þ ¼ kKf � ck22; ð2Þ
where c is the experimental measurement which is mod-
eled according to [19]

cðtÞ ¼
Z tmax

0

a1 e�a1ðlnðkÞ�r1Þ2 þ a2 e�a2ðlnðkÞ�r2Þ2
� �

e�kt dk;

ð3Þ
K is the Kernel that was discretized as in [19] and is
defined as a model according to Fredholm integral equa-
tion of first orderZ b

a
Kðt; kÞf ðkÞ dk ¼ cðtÞ. ð4Þ

Three genetic operators were used, namely, mating,
mutation and natural selection. Mutation operator is
applied mutating some parents and offsprings. In the off-
spring mutation process, the original offspring and the
offspring mutated are preserved and minimized. The
natural selection operator does not permit the increasing
of the population and mutation will avoid, in principle,
premature convergence (stagnation) into a local mini-
mum. Finally, the best individuals (highest fitness) are
selected throughout the natural selection operator which
allows the best individuals to generate a new population.
In the present GA, the population size is constant dur-
ing all generations and our natural selection is elitist.
This procedure will avoid oscillations in the minimiza-
tion procedure and can therefore be more efficient at
finding global minima. Due to the stochastic nature of
GAs, we have introduced the same approach adopted
in the classical trajectory methodology, i.e., an average
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