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aINFM and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi 53, I-20125 Milano, Italy
bSchool of Chemical and Pharmaceutical Sciences, Kingston University Kingston upon Thames, KT1 2EE, UK

Available online 8 December 2004

Abstract

We present a microscopic calculation of the axial dispersion for the quaterthiophene crystal in a spectral region

including the first and higher molecular excited states. After evaluating the complex dielectric tensor near the

corresponding Frenkel excitons we observe that two of the principal axes referring to the upper Davydov states rotate

with energy within the reflection plane of the monoclinic unit cell. In particular, we show the role of this dispersion in

understanding the relationship between the transverse dielectric tensor and the measured optical spectra.

r 2004 Elsevier B.V. All rights reserved.

PACS: 71.35.Cc; 78.20.Ci; 78.40.Me

Keywords: Dielectric tensor; Axial dispersion; Optical spectra

1. Introduction

Oligothiophenes (nT) are representative of a
large class of linear p-conjugated organic mole-
cules whose solid-state properties have recently
received a revival in interest due to their potential
in technological applications [1,2]. There are many
papers [3–9] devoted to their optical responses
both experimentally and theoretically but a deep

and complete knowledge of these systems requires
further efforts. For example, these materials are
very anisotropic, which strongly affects the optical
measurements in that the absorbance and reflec-
tance are subjected to the electrodynamic effect of
the system that can be understood only by
knowledge of the directions of the principal axes
of the dielectric tensor.

Here we show a microscopic calculation of the
axial dispersion [10], i.e. the rotation with energy
of the principal axes of the dielectric tensor built
up near Frenkel exciton resonances. We include
higher molecular excitations that in the crystal are
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described by a complete Hamiltonian accounting
for the coupling among them. We report the
imaginary part of the dielectric tensor and the
axial dispersion by showing the direct correlation
with the absorbance spectra.

2. Theoretical background

We consider an extension of the Heitler–Lon-
don Hamiltonian [11] to several molecular excited
states:
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where rðsÞ ¼ 1; . . . ; l refers to the r(s)th molecular
excited state, aðbÞ to the molecule in the unit cell
and the index nðmÞ labels the unit cell of the
crystal; Er is the rth electronic excitation energy,
Dr is its gas-to-crystal shift energy, Bþ

nar is the
operator that creates an electronic excitation over
molecule na from the electronic ground state to the
rth excited electronic state while Bnar is the
operator responsible for the de-excitation. Finally,
Trs

namb is the resonance-interaction matrix.
In order to diagonalize Hamiltonian (1) we start

by defining the following unitary transformations:
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The first one takes into account the delocaliza-
tion of the exciton while the latter leads to the
Davydov states labelled with mr: For each wave
vector k the Hamiltonian reads:
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At k ¼ 0 and for a crystal with four inequivalent
molecules the unitary matrix uamr

ðkÞ results
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Thus, Hamiltonian (4) is block diagonalized and
each block leads to sub-set of exciton states
classified according to symmetry, i.e. the irreduci-
ble representations of the factor group ðm ¼

fagaubgbugÞ: The block structure of the matrix in
Eq. (4) is due to a zero value of elements Grs

mrms
as

they refer to a different Davydov state. Finally,
each block of m symmetry can be diagonalized
independently by numerical methods and the
resulting eigenfrequencies Omt are the new reso-
nances of the Frenkel excitons while their transi-
tion dipoles can be computed from the
corresponding eigenvectors wm

sr by using the
following relations:

~aþ
mt ¼
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dmt ¼ h0jexj ~aþ
mt0i, (11)

where j0i is the ground state, e the electron charge
and x the displacement of the promoted electron.

The transfer exciton matrix in Eqs. (7) and (8)
are calculated via Ewald methods[12]. As the first
molecular excited state is the most intense,
containing the majority of the oscillator strength,
we prefer to calculate the matrix M11

abðkÞ by
describing the HOMO–LUMO electronic transi-
tion as a distribution of discrete charges on the
atomic sites accounting for the delocalization of
the transition dipole moment [9,13]. The higher
less intense molecular transitions are described in
point dipole approximation. Moreover, in order to
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