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In this paper, we study jumps in commodity prices. Unlike assumed in existing models of com-
modity price dynamics, a simple analysis of the data reveals that the probability of tail events is
not constant but depends on the time of the year, i.e. exhibits seasonality.We propose a stochastic
volatility jump–diffusion model to capture this seasonal variation. Applying the Markov Chain
Monte Carlo (MCMC) methodology, we estimate our model using 20 years of futures data from
four different commodity markets. We find strong statistical evidence to suggest that our model
with seasonal jump intensity outperformsmodels featuring a constant jump intensity. To demon-
strate thepractical relevance of ourfindings, we show that ourmodel typically improvesValue-at-
Risk (VaR) forecasts.
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1. Introduction

Models of commodity price dynamics proposed recently feature continuous and discontinuous components. While the continuous
component has been extensively studied, it is somewhat surprising that little attention has been paid to themodeling of the discontin-
uous components, i.e. price jumps. Current models of commodity prices implicitly assume a constant probability of jumps. There are,
however, reasons to question the validity of this assumption. This is becausemany commodities display seasonal demand and/or supply
patterns. For example, the demand for heating oil peaks during the winter and bottoms out during the summer. Hence, it is natural to
expect a higher number of price shocks during the cold months, when demand for energy peaks, than during the summer months.

This paper studies the dynamics of jump events in commoditymarkets. In doing so, wemake three important contributions to the
literature on commodity price modeling. First, we analyze the distribution of extreme commodity returns over time. Specifically, we
extract the top and bottom 2.5% returns of the heating oil, natural gas, soybeans and corn markets. We examine the distribution of
these returns over time and find important variations in the probability of jumps. This result has a profound implication. It suggests
that the assumption of constant jump intensity, implicit in existingmodels of commodity price dynamics, is not supported by the data.

Second, this observation inspires us to propose and estimate a stochastic volatility jump–diffusion model to capture this time-
variation. The novel feature of our model is a time-varying probability of jump occurrences, which we model in an intuitive and par-
simonious way. Using a Markov Chain Monte Carlo (MCMC) based approach, we estimate our model for the four markets considered
using more than 20 years of data. Our parameter estimates unequivocally point to significant time-variations in the probability of
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jumps, confirming the results of our preliminary analysis.We relate these fluctuations to seasonal stages of demand and supply cycles,
suggesting that our findings are not only statistically significant but also economically plausible. For example, ourmodel suggests that
the intensity of jumps in energymarkets rises substantially during the coldmonths relative to the summermonths, when the demand
for energy commodities is typically low.

Third, we assess our newly proposed model in detail, drawing on statistical and economic loss functions. We compare all models
based onDeviance Information Criterion (DIC) scores, which take into accountmodel complexity.We show that themodel with time-
varying jump intensity always achieves a smaller DIC score than its competitor, demonstrating its superiority froma statistical point of
view. In order to establish the practical relevance of our study, we assess all models on their ability to improve risk-management de-
cisions.With a view to doing this, we estimate the Value-at-Risk (VaR) and conduct a comprehensive backtesting analysis. The results
show that capturing time-variations in the probability of jumps typically improves VaR forecasts.

Ourwork relates to the literature on asset pricemodeling. This literature dates back to the seminal work of Black & Scholes (1973),
whomodel prices as a diffusion processwith constant volatility. Hull &White (1987) and Heston (1993) extend this model and spec-
ify the volatility of the underlying as amean-reverting stochastic process. Thesemodels crucially hinge on the counterfactual assump-
tion that asset prices follow continuous processes. For example, such an assumption is difficult to reconcile with the large fluctuations
of October 1987.1 In light of this, Bates (1996) proposes a stochastic volatility model with jumps in returns, and empirically confirms
the superiority of his model. Bakshi et al. (1997) echo these conclusions. Duffie et al. (2000) propose two jump–diffusionmodels. The
first model features simultaneous jumps in returns and volatility and correlated jump sizes. The second model features independent
jump arrivals and sizes. These models are comprehensively analyzed by Eraker et al. (2003), who convincingly show that stochastic
volatility jump–diffusionmodels capture the dynamics of equity indices better than standardmodels, such as those of Black & Scholes
(1973), Merton (1976) and Heston (1993).

In contrast to the literature concerned with equity price dynamics, the literature on commodity price modeling is somewhat scant.
Hilliard &Reis (1998) andKarali et al. (2011) estimate jump–diffusionmodels, originally developed for equity prices, in commoditymar-
kets. Sørensen (2002), Back et al. (2013), Brooks & Prokopczuk (2013) and Schmitz et al. (2014) propose a variety ofmodels that capture
seasonal variations in commodity returns and volatility. But none of these studies considers the time-varying probability of jumps.

The remainder of this paper proceeds as follows. Section 2 describes our dataset and documents important time-variations in the
probability of extreme returns. Section 3 presents ourmodel and explains our estimation approach. Section 4 discusses our parameter
estimates. Section 5 assesses the importance of our proposedmodel. Section 6 analyzes the robustnesswith respect to themodel spec-
ification. Finally, Section 7 concludes.

2. Data and preliminary analysis

This section first provides a detailed account of our dataset of commodity prices. We then conduct a preliminary analysis of ex-
treme returns over time.

2.1. Data

We obtain daily futures settlement prices for the heating oil, natural gas, corn and soybeans futures markets from the Commodity
Research Bureau (CRB). Our sample period extends from January 2, 1991 to December 30, 2011. The futures contracts on all four com-
modities trade on the ChicagoMercantile Exchange (CME). Energy futures, i.e. heating oil and natural gas, follow amonthly expiration
cycle. Corn futures contracts are available for the followingmonths: March, May, July, September and December. Finally, soybeans fu-
tures expire in January, March, May, July, August, September and November.

Our interest in the heating oil, natural gas, corn and soybeans futures markets is not coincidental. Several reasons motivate our focus
on these four commodities. First, these markets rank high among the most liquid commodity markets. Obviously, fair transaction prices
are important to obtain economically meaningful parameter estimates. Second, the heating oil, natural gas, corn and soybeans futures
markets display important seasonal patterns at the intrayear level (Karali et al., 2011; Schmitz et al., 2014). These seasonal fluctuations
are important because they are likely to introduce time-variations in the probability of jumps, which we analyze in this paper.

Because investments in commoditymarkets typically involve rolling over futures contracts, one should be cautious of the compu-
tation of commodity returns, making sure that information from two different contracts are not used to compute returns. In comput-
ing commodity returns, we distinguish between two cases. First, suppose thatwe are interested in computing returns on the business
day immediately following the expiration of the previous prompt contract, i.e. the rollover date. We compute the return on a specific
commodity as the logarithm of the ratio of the price of the current front-month contract over the second-nearby contract on the roll-
over day. More formally, we compute commodity returns as follows:

rtþ1 ¼ log
F 1ð Þ
tþ1

F 2ð Þ
t

ð1Þ

where rt+ 1 denotes the commodity return at time t+1. Ft+ 1
(1) refers to theprice of thefirst nearby contract at time t+1. Finally, Ft(2) is

the price of the second nearby contract at time t. Note that the first nearby contract at time t+ 1 was the second nearby contract at
time t. Thus, the return in Eq. (1) is based on prices of the same contract at different points in time.

1 See Roll (1988) for an interesting discussion of these events.
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