Available online at www.sciencedirect.com

SCIENCE<($DIRECT®

Journal of Magnetic Resonance 173 (2005) 218-228

JMR

Journal of
Magnetic Resonance

ELSEVIER

www.elsevier.com/locate/jmr

The use of multivariate MR 1maging intensities versus metabolic
data from MR spectroscopic imaging for brain tumour classification

A. Devos™’, A.W. Simonetti®, M. van der Graaf®, L. Lukas®, J.A.K. Suykens?,
L. Vanhamme®, L.M.C. Buydens®, A. Heerschap®, S. Van Huffel*

& K.U. Leuven, ESAT-SCD (SISTA), Leuven, Belgium
® Laboratory for Analytical Chemistry, University of Nijmegen, Nijmegen, The Netherlands
¢ Department of Radiology, University Medical Center Nijmegen, Nijmegen, The Netherlands

Received 21 September 2004; revised 20 December 2004
Available online 22 January 2005

Abstract

This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic
imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested
by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra
and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least
squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel
as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets.
The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In
general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For
example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC
was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use
of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR
imaging intensities solely.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) is an important
noninvasive tool for identifying the location and size of
brain tumours, because it yields morphological and ana-
tomical information about the brain tissue. However,
conventional MRI has a limited specificity is rather non-
specific in determining the underlying type of brain tu-
mour and grade [1,2]. More recently developed MR
techniques like diffusion-weighted MRI, perfusion-
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weighted MRI, and magnetic resonance spectroscopic
imaging (MRSI) are promising new techniques in the
characterization of brain tumours [3,4]. Diffusion-
weighted MRI visualizes the tissue structure and is useful
for assessing tumour cellularity, while perfusion-weighted
MRI provides measurements that reflect changes in tu-
mour vasculature and tumour grading. MRSI or multi-
voxel magnetic resonance spectroscopy (MRS) provides
chemical information about metabolites present in nor-
mal and abnormal tissue [5-8]. Therefore, the differentia-
tion of abnormal brain tissues, including brain tumours,
from normal brain forms a potentially major clinical
application of these new techniques. In general, diagnosis
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of brain tumours is based on the microscopic examination
of tissue obtained by a biopsy, which includes risks asso-
ciated with anesthesia and surgery. It would be very ben-
eficial to the patient if the invasive biopsy could be guided
or even avoided by the use of noninvasive techniques like
diffusion-weighted MRI, perfusion-weighted MRI, and
MRS(I). In this study, we combined the use of conven-
tional MRI intensities and one of the new techniques,
more specifically MRSI.

Several studies [9-18] have shown progress in auto-
mated pattern recognition for brain tumour classification
using MRI or MRS(I). However, currently only few stud-
ies (e.g., [14,15]) have used a combination of MRI and
MRSI features for classification of brain tumours. To en-
hance the diagnostic capabilities in clinical practice, we
investigated whether the combined use of MR imaging
intensities and metabolic data from MRSI could improve
the discrimination between several brain tumour and nor-
mal brain tissue types. Although the radiologist also uses
spatial and morphological information present in the MR
images, these features were not taken into account in this
study, as they are difficult to quantify. By comparing the
results obtained, we evaluated the strength of both, MR
imaging intensities and metabolic data from MRSI, in dis-
criminating brain tissue types.

We considered linear as well as nonlinear classifica-
tion techniques applied to several input features, such
as short echo time magnitude spectra, imaging intensi-
ties, peak integration values obtained from the spectra
and a combination of the latter two. The algorithms
were designed to extract the most important features
which were then used to classify each spectrum into
the corresponding tumour type. As classification is
required to be objective and user-friendly, all techniques
were automated. The purpose of this paper was twofold:

e To investigate the discriminatory value of MRI inten-
sities and metabolic data extracted from MRSI for
automated brain tumour diagnosis. This analysis also
provides the typical AUC values achievable for sev-
eral relevant diagnostic problems of brain tumours.

e To apply and compare several classification tech-
niques, including the investigation of the influence
of the input features used.

2. Materials
2.1. Data

Data from 25 patients with a brain tumour and 4 vol-
unteers were selected from the database developed in the
framework of the EU funded INTERPRET project
(IST-1999-10310) [19]. All data were provided by the
acquisition center UMCN (University Medical Center

Nijmegen), Nijmegen (The Netherlands). Each case
was clinically validated. The patients’ tumour type was
determined by a central consensus histopathological val-
idation. For one of the 25 patients no consensus was
reached. Therefore, the data from the tumour region
of this patient were not used.

The dataset contained MR images as well as MR spec-
tra, acquired and preprocessed as described in [14]. For
each subject, stacked MR images of cross-sections of
the whole brain at four contrasts were acquired: 7'- and
T,-weighted images, a proton density weighted image
and a gadolinium enhanced (Gd-DTPA) T'-weighted im-
age (256 x 256, FOV = 200 mm, slice thickness = 5 mm).
The image values will further be labeled as T, T», PD, and
GD. No Gd-DTPA administration was applied to the
healthy volunteers. Besides MR images, also '"H MRSI
data were acquired for each subject, both with and with-
out water suppression using a 16 x 16 2D STEAM 'H
MRSI sequence with acquisition parameters TR = 2000
or 2500 ms, TE = 20 ms, slice thickness 12.5 or 15 mm,
FOV =200 mm, SW = 1000 Hz, 1024 data points. The
position of the MRSI slice was chosen according to the
slice position of the GD image which showed the largest
GD enhancement.

To ensure that image pixels from subsequent images
originate from the same spatial location, the images
were co-aligned [14]. All MRSI data were semi-automat-
ically preprocessed (cf. [14]), which involved:

e Filtering of the k-space data by a Hanning filter of
50% using the LUISE software package (Siemens,
Erlangen, Germany).

e Zero filling to 32 x 32, which involved an increase of
the apparent spatial resolution with a factor of 2.

e Spatial 2D Fourier transformation to obtain time
domain signals for each voxel.

e Correction for eddy current effects in the MR spectra
using a method which prevents the occasional occur-
rence of eddy current correction induced artefacts
[20]. This process resulted in a frequency alignment
and zero order phasing of the MR spectra.

e Removal of the dominating residual water using
HLSVD [21], with 12 singular values and 4.0-
6.0 ppm as residual water region.

e Frequency alignment was performed semi-automati-
cally. First, the position of the NAA peak (N-acetyl-
aspartate, “CH;-group) in the mean spectrum of an
MRSI dataset was set to 2.02 ppm. The obtained shift
was used to reset each spectrum of the dataset in the
time domain automatically.

e First order phase correction was also manually per-
formed on the mean spectrum of a dataset. The
obtained first order time instant was used to automat-
ically correct each spectrum in the dataset.

e Fourier transformation was applied to the time
domain data to obtain frequency spectra.
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