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This paper aims at improved accuracy in testing for long-run predictability in noisy series, such
as stock market returns. Long-horizon regressions have previously been the dominant
approach in this area. We suggest an alternative method that yields more accurate results. We
find evidence of predictability in S&P 500 returns even when the confidence intervals are
constructed using model-free methods based on subsampling.
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1. Introduction

Define the long-horizon return regression as the regression of the aggregated quantity of interest, here the return,
rt + 1 + … + rt + H, on a predictive variable, xt. Three facts emerge from the vast literature on long-horizon regressions. First,
despite the appealing empirical results, long-horizon regressions appear to carry little or no information about the relation of
rt + 1 to xt aside from what is already conveyed by the simple regression of rt + 1 on xt (e.g., Boudoukh et al., 2007). Second, when
correct confidence intervals are used, both simple regressions and long-horizon regressions only weakly reject the hypothesis of
no predictability (e.g., Goyal and Welch, 2008; Valkanov, 2003; Wolf, 2000). Third, if xt is persistent, then both simple regressions
and long-horizon regressions often yield biased estimates owing to the contemporaneous correlation of rt and xt. Because the
contemporaneous correlation is usually of opposite sign to the estimated regression slope for the return regressions, it follows
from Stambaugh (1999) that the predictability in returns is systematically overestimated.

In this paper, we demonstrate that long-horizon regressions do carry additional information when the short-run dynamics of
returns differ from their long-run dynamics. Furthermore, we show that there exist methods, defined in the frequency domain,
that provide a superior fit for testing the long-run predictability compared to that provided by long-horizon regressions. In
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particular, we focus on two estimators: the local Whittle estimator and the frequency-domain least squares (FDLS) estimator by
Robinson (1994). The corresponding confidence intervals for the tests are constructed in two ways: first, using a simple
parametric approach by Boudoukh et al. (2007), and, second, using a method based on subsampling by Wolf (2000).

Applications of frequency-domain methods to the estimation of variable interactions have been extensively studied in the
literature (see Granger, 1969; Granger and Hatanaka, 1964). The current paper is also related to the literature on the estimation of
co-integrating systems of fractionally integrated processes (e.g., Bandi and Perron, 2006; Christensen and Nielsen, 2006; Lobato,
1997; Marmol and Velasco, 2004; Nielsen and Frederiksen, 2011; Robinson, 1994; Robinson and Marinucci, 2003). To the best of
our knowledge, none of these papers has investigated the problem of testing for predictability in series resembling white noise,
such as asset returns.

The paper is structured as follows. Section 1 introduces the main concepts to be applied in this study. Section 2 presents the
results of our simulations. An empirical application of our results is demonstrated in Section 3. Section 4 presents empirical
findings matching our tests with subsampled confidence intervals. The results are summarized in the Conclusion.

2. Basic concepts

Suppose that the return dynamics are governed by the following linear model:

rtþ1 ¼ μ þ βxxt þ εtþ1;

where cov(xt, εt + 1) = 0, for which we will test that βx = 0. In the usual situation, which is also the situation of concern, xt is
persistent. The most widely studied case is that in which xt follows an autoregressive process,

xtþ1 ¼ ρxt þ utþ1; ð1Þ

where ρ is less than but close to 1. Here, εt + 1 and ut + 1 are significantly less persistent than xt. Once rt is aggregated, the
following relation emerges:

XH
i¼1

rtþi ¼ μH þ βx

XH
i¼1

xtþi−1 þ
XH
i¼1

εtþi:

The higher the persistence of xt, the more rapid the increase in the variance of the sum∑ i = 1
H xt + i − 1 with the horizon, H. At

high frequencies, the process rt may appear noisy when βx is sufficiently small. However, if xt is persistent and H is large, then the
variation of the “predictable” portion, βx ∑ i = 1

H xt + i − 1, dominates the variation of the unpredictable portion,∑ i = 1
H εt + i, in

effect removing the noise. This is a mechanism through which the long-horizon regressions extract information from return series
(e.g., Fama and French, 1988).

Although long-horizon regressions are a straightforward generalization of simple regressions, they are not guaranteed to yield
efficient estimators under any assumptions. In this paper, the estimation is instead based on the Gaussian likelihood
maximization, which yields quasi-maximum likelihood estimates (QMLEs) for non-normally distributed xt and rt. The
maximization of the Gaussian likelihood function with respect to the model parameters θ can be replaced by the minimization
of the Whittle approximation for a class of processes,1

lT θð Þ ¼
XT−1

j¼1

log
���sxr θ;ω j

� ����þ trðsxr θ;ω j

�
−1IxrT ω j

� �� �h i
;

where T is the number of observations, ITxr(ωj) is the sample periodogram of the pair (xt, rt) calculated at natural frequencies,
ωj = 2πj/T. The procedureminimizes the distance from IT

xr(ωj) to its population counterpart, sxr(θ, ωj). The function sxr(θ, ω) is the
theoretical spectrum of (xt, rt), in which the (1, 1) element sxx

xr(θ, ω) is the spectrum of xt. Its (2, 2) element srr
xr(θ, ω) is the

spectrum of rt and sxr
xr(θ, ω) and srx

xr(θ, ω) are off-diagonal elements that characterize the cross-spectrum, i.e., the interrelatedness
of xt and rt at different frequencies.

The exact formula for the spectrum depends on the model. For example, for an autoregressive xt as in model (1), the spectrum
is represented by the following matrix:

sxr θ;ωð Þ ¼

suεuu θ0;ω
� �

j1−ρe−iωj2 βxe
ωi suεuu θ0;ω

� �
j1−ρe−iωj2 þ

suεuε θ0;ω
� �

1−ρe−iω� �
βxe

−ωi suεuu θ0;ω
� �

j1−ρe−iωj2 þ
suεεu θ0;ω
� �

1−ρeþiω� � β2
x

suεuu θ0;ω
� �

j1−ρe−iωj2 þ 2Re βxe
−ωi s

uε
uε θ0;ω
� �

1−ρe−iω

 !
þ suεεε θ0;ω

� �

2
66664

3
77775;

1 E.g., the results of Dzhaparidze (1986) for Gaussian processes rely on the conditions that should hold for the Fourier coefficients β(τ) of the spectral density,
∑ τ = 1

∞ τ||β(τ)||2 b ∞. Hannan (1973) provides the results for moving average (not necessarily Gaussian) processes with square-summable moving average
coefficients and driven by innovations with constant variances.
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