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Abstract

The thermodynamic properties of fluids are predicted using global equations of state. Among these thermodynamic properties, we

consider the densities of the liquid and vapor phases, pressure, the caloric properties such as specific heat at constant volume and specific heat

at constant pressure and the speed of sound. In the present work, we apply the crossover theory to these thermodynamic properties and give a

comparison of the crossover model equation of state with the experimental thermodynamic property data of ethane.
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1. Introduction

The asymptotic singular behavior of the thermodynamic

properties of fluids in the vicinity of the critical point can be

described in terms of scaling laws with universal scaling

exponents and universal scaling functions [1,2]. A revised

and extended parametric equation, which incorporates the

theoretically predicted asymptotic scaling behavior, was

formulated by Balfour et al. [3]. This parametric equation

yields an accurate representation of the thermodynamic

properties of fluids such as ethane near the critical point as

documented by Levelt Sengers et al. [4,5].

The validity of the scaled parametric equations, however,

is limited to a small range of temperatures and densities

around the critical point. In order to represent the

thermodynamic properties in a wider range of temperatures

and densities, a theory for the nonasymptotic thermody-

namic behavior has to be implemented. The singular

thermodynamic behavior is obtained from the renormaliza-

tion group theory of critical phenomena by linearizing the

renormalization equation around the fixed point [6]. The

nonasymptotic thermodynamic behavior can be obtained by

considering the full nonlinear renormalization equations [6–
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8]. The theory needs to account for the effect of critical

fluctuations up to a maximum wave number comparable to

an inverse microscopic length. Since near the critical point

the correlation length becomes large, the dependence of the

solution of the renormalization equations on the cutoff wave

number is unimportant. However, to obtain a complete

crossover from critical behavior to regular behavior, the

effect of the cutoff wave number must be retained, since one

must recover the regular behavior when the correlation

length becomes microscopic [8–10].

Based on these principles, Albright et al. [11] and Chen

et al. [12] have formulated a theory for this crossover

behavior. In their earlier approach, the classical theory was

presented by a two-term Landau expansion. While a two-

term crossover theory was sufficient to describe some of the

basic features of the crossover theory, it is restricted to a

limited range of validity around the critical point. The point

is that far away from the critical point, where the classical

theory should become valid, a two-term classical equation

itself will not be adequate. The reasons for the formulation

of this new equation of state of ethane encompass

significant new and accurate pressure data reported by

Funke et al. [15] and Claus et al. [16] and improvements in

the extension of the crossover theory to be used in

connection with a six-term Landau expansion [8]. There-

fore, Abbaci [13] and Abbaci et al. [14] have subsequently

extended the crossover theory to be used in conjunction

with a six-term Landau expansion.
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In this work, we shall proceed as follows. In Section 2,

we present the crossover theory, in Sections 3 and 4, we

discuss the application of the model to ethane and use it to

analyze the available experimental data for C2H6 in the

critical region.

2. Crossover theory

Let q be the density, T the temperature, P the pressure,

l the chemical potential and A/V the Helmholtz free

energy per unit volume. We make these properties

dimensionless with the aid of the critical parameters

[13,14]:

q̃q ¼ q=qc; T̃T ¼ � Tc=T ; P̃P ¼ PTc=PcT ;

l̃l ¼ lqcTc=PcT ; ÃA ¼ ATc=PcVT ð1Þ

In addition we define

Dq̃q ¼ q̃q � 1;DT̃T ¼ T̃T þ 1;Dl̃l ¼ l̃l � l̃l0 T̃T
� �

; ð2Þ

and

DÃA ¼ ÃA � q̃ql̃l0 T̃T
� �

� ÃA0 T̃T
� �

: ð3Þ

Here l̃l0 T̃T
� �

and ÃA0 T̃T
� �

are analytic background func-

tions of T subject to the conditions that at the critical

temperature Dl̃l T ¼ Tcð Þ ¼ 0 and ÃA0 T ¼ Tcð Þ ¼ � 1.

Classical equations of state for the Helmholtz free energy

density A imply that the classical part Acl has an asymptotic

expansion of the form:

DÃAcl ¼ 1=2ð ÞtM 2 þ u0=2!ð ÞM 4 þ a05=5!ð ÞM 5

þ a06=6!ð ÞM 6 þ a14=4!ð ÞtM 4

þ a22=2!2!ð Þt2M 2 ð4Þ

where t and M are temperature-like and density-like

variables related to DT and Dq in a manner to be specified

below. In the sequel, we find it convenient to write the

coefficient u0 of the M
4 term in Eq. (4) as u0=uK, where K

is a dimensionless cutoff wave number [7–9], the coef-

ficients a05, a06, a14 a22 are the classical system-dependent

parameters.

The theoretically predicted asymptotic behavior can be

recovered from this expansion by the following trans-

formation:

DÃAr ¼ 1=2ð ÞtM 2TDþ u0=2!ð ÞM 4D2U

þ a05=5!ð ÞM 5D5=2VU þ a06=6!ð ÞM 6D3U 3=2

þ a14=4!ð ÞtM 4TD2U1=2

þ a22=2!2ð Þt2M 2T2DU�1=2 � 1=2ð Þt2K ð5Þ

where the functions T, D, U, V and K are defined by

T ¼ Y 2�1=mð Þ=x;D ¼ Y�g=x;U ¼ Y 1=x

V ¼ Y 2xa�1ð Þ=2x;K ¼ m=aūK Y�a=mx � 1
i

ð6Þ
h

In terms of a crossover function Y to be determined from

1� 1� ūð ÞY ¼ ū 1þ K2=j2
� �1=2

Y 1=x ð7Þ

with

j2 ¼ tT þ 1=2 uKM 2 DU ; ð8Þ

and

ū ¼ u=u4 ð9Þ

In these expressions m, g, x and xa are universal critical

exponents, u* is another universal constant. The values of the

universal critical-region parameters are specified in Table 1.

The crossover model depends parametrically on the

variable j2 defined by Eq. (8). For the small values of j one

recovers from Eq. (5), the scaled critical behavior, while for

large values of j the crossover function Y approaches unity

and Eq. (5) reduces to the classical Landau expansion Eq.

(4). In order to apply the crossover model to fluids, we need

to introduce a proper translation to fluid variables [13]. This

is accomplished by the transformation:

t ¼ ctDT̃T þ c BDÃAr=BM
�
t
;

�
ð10Þ

M ¼ cq Dq̃q � d1DT̃T
�
þ c BDÃAr=Bt

�
M

��
ð11Þ

with the corresponding transformation:

DÃA ¼ DÃAr � c BDÃAr=BM
�
t
BDÃAr=Bt

�
M

��
ð12Þ

where c, ct, cq and d1 are system-dependent constants.

Finally, the total Helmholtz free-energy density is obtained

from Eq. (3) as:

DÃA ¼ ÃA � q̃ql̃l0 T̃T
� �

� ÃA0 T̃T
� �

ð13Þ

with

l̃l0 T̃T
� �

¼
Xj¼4

j¼1

l̃lj DT̃T
� �j

and ÃA0 T̃T
� �

¼ � 1þ
Xj¼4

j¼1

ÃAj DT̃T
� �j ð14Þ

Table 1

Universal critical-region constants

m=0.630
g=0.033
a=2–3m=0.110
D=0.51

xa=2.1

u*=0.472
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