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Abstract

Effects of the inhomogeneous broadening on the optical responses of a two-level system in the four-wave mixing signal (FWM)
were studied in this work. In this model, we introduced in the optical Bloch equations a stochastic Bohr frequency, generated as a
consequence of the solute–solvent molecular collisions. These expressions are averaged in the statistical ensemble over all realiza-
tions of the random variables. Using the convolution theorem, it is possible to incorporate the saturation effects of the electromag-
netic field treated at all orders of perturbation. For the averages, we have considered two distributions of linewidth. From the
analytical expressions, for both linear and nonlinear responses, numerical calculations were carried out to obtain surfaces as a func-
tion of the magnitude of the pump field and the detuning factor. Saturation effect is shown in the linear and the coupled nonlinear
responses. In this work, we have already considered the inhomogeneous spectral line and studied the cases in which all the fields
propagate through the medium.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the literature, the stochastic Bohr frequency
n (t) = k (t) + x0 on the optical Bloch equations (OBE)
has been introduced to obtain the optical stochastic
Bloch equations (OSBE) [1–4]. In that expression, k (t)
comprises all the fluctuation over the conventional Bohr
frequency x0, due to different collisions that occur with
the environment, so the average Æk (t)æ = 0 is valid [5].
Various methods have been used to resolve this system
of equations [6–12]. In previous works, we have pre-
sented different formalisms to do it. Particularly, in
[13,14] the OSBE have been used to describe the interac-
tion of a two-level system in the presence of a four-wave
mixing (FWM) signal, that is, the interaction of three

laser fields with the wave vectors ~k1, ~k2, and ~k3 and fre-
quencies x1, x2, and x3, where the subscripts 1, 2, and 3
refer to the pump, probe, and signal beams, respectively.
Specifically, this technique implies that two-pump
beams are focused onto the resonant medium generating
a signal with a frequency of works x3 = 2x1 � x2 and
wave vectors ~k3 � 2~k1 �~k2. In these publications, the
average of the coherence over all realizations of the sto-
chastic variable was calculated from a gaussian proba-
bility density. At present, we extend that model to
consider lorentzian probability distribution and to com-
pare its results with those obtained with the first distri-
bution. From the averaged coherence, we obtained
analytical expressions for the components of susceptibil-
ity, both linear and nonlinear, and carrying out numer-
ical calculations we obtain surfaces of the optical
responses. The behavior of the susceptibility as a func-
tion of the parameters of the probability densities was

0022-2852/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jms.2005.04.002

* Corresponding author: Fax: +58 212 9063954.
E-mail address: jlpaz@usb.ve (J.L. Paz).

www.elsevier.com/locate/jms

Journal of Molecular Spectroscopy 232 (2005) 157–166

mailto:jlpaz@usb.ve


explored and an important connection between those
and the system–environment interaction was found. In
Section 2, we explain in detail the theoretical consider-
ations and methodology used by us. The numerical cal-
culation is discussed in Section 3. Results are shown and
analyzed in Section 4 and finally, in Section 5 we give the
concluding remarks.

2. Theoretical considerations

The dynamics of a two-level molecular system defined
by the states jaæ and jbæ in the presence of electromag-
netic fields are obtained by solving the optical stochastic
Bloch equations (OSBE) given by:

_qðtÞ ¼ AðtÞqðtÞ þ RðtÞ; ð1Þ
where q (t) is the density matrix that represents the states
of the system; R (t) represents the nonradiative relaxa-
tion vectors, respectively,
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and A (t) is the radiative matrix that includes the sto-
chastic variable given by:

AðtÞ ¼
�ðinðtÞ þ 1=T 2Þ 0 iX

0 ðinðtÞ � 1=T 2Þ �iX�

�2iX� 2iX �1=T 1

0
B@

1
CA;

ð3Þ
Here, the dipole-electric approximation has been consid-
ered; we have defined that qD = qaa (t) � qbb (t) is the dif-
ference in state population and the superscript ‘‘eq’’
denotes the equilibrium value in the absence of radia-
tion; the interaction radiation–matter is defined by the
Rabi frequency, given by X ¼~lba �~EðtÞ=�h, where ~lba is
the transition dipole moment for the two-level system.
In this model, we have considered the permanent dipole
moments (~laa and ~lbb) in the two different electronic
molecular states equal to zero; the total field is given
by ~EðtÞ ¼ ~E1ðtÞ þ~E2ðtÞ þ~E3ðtÞ with each field expressed
classically according to ~EjðtÞ ¼ ~EjðxjÞ expð�ixjtÞ þ c:c:
with ~EjðxjÞ ¼ ð~E0j=2Þ exp½ið~kj �~r þ /jÞ� representing the
Fourier component that oscillates at frequency xj with
a phase angle /j. In the present model, we use the semi-
classical approximation, so our formulation does not in-
clude spontaneous relaxation channels.

We have assumed that in steady-state the elements of
the stochastic density matrix satisfy the relations [15]:

qbaðtÞ ¼
X
I¼1

qbaðxIÞ expð�ixI tÞ; ð4aÞ

qDðtÞ ¼ qdc
D þ

X
m¼1

qDðmDÞ expð�imDtÞ; ð4bÞ

qbaðtÞ ¼ q�
abðtÞ; ð4cÞ

where D = x1 � x2 is the detuning factor and qdc
D is the

direct current term of the population difference compo-
nent that oscillates at zero frequency.

In the rotating wave approximation and in steady-
state, the following relationships are obtained:

W2nþ1qbaðx1 þ nD; nÞ
¼ iX1qDðnD; nÞ þ iX2qD½ðnþ 1ÞD; n�
þ iX3qD½ðn� 1ÞD; n�; ð5Þ
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where W2n+1 = i (n � x2n+1) + 1/T2 represents the reso-
nant term that includes the stochastic molecular fre-
quency n, for only the values of n = 0, 1, �1, defined for
pump, signal, and probe, respectively, and where
W�1 ” W2; Nn (nD) = 1/T1 � inD; qba (xk,n) and qD (nD,n)
are the Fourier components of the coherence and popula-
tion difference that oscillate at the frequenciesxk and nD,
respectively. The identities qbaðxk; nÞ ¼ q�

abð�xk; nÞ and
qD (nD,n) = qD (�nD,n) are valid.

2.1. Averaged coherence

Starting from Eqs. (5) and (6), and considering all or-
ders of perturbation in the pump field, but only first
order in probe and signal fields, the coherences at
the pump, probe, and signal frequencies can be ex-
pressed as:
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for the zero-frequency component of qD we have:
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