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Search, bioprospecting and biodiversity conservation
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Abstract

To what extent can private-sector bioprospecting incentives be relied upon for the protection of biological diversity? The

literature contains dramatically different estimates of these incentives, from trivial to quite large. We resolve this

controversy by isolating the fundamental source of the discrepancy and then providing empirically defensible estimates

based on that analysis. Results demonstrate that the bioprospecting incentive is unlikely to generate much private-sector

conservation. Thus, other mechanisms are likely required to preserve the public good of biodiversity.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

To what extent can the private-sector be relied upon for the protection of biological diversity?
Bioprospecting, the search for valuable products such as pharmaceuticals in biological organisms, is one
incentive mechanism that has received much recent attention (see, e.g. [22,23,16]). An important controversy
has emerged from this literature. Simpson et al. [28] argue that bioprospecting incentives are likely vanishingly
small, less than $21/ha. In contrast, Rausser and Small [26] argue that bioprospecting incentives are likely
quite large, perhaps $9177/ha, because information facilitates a more efficient search process. This latter result
suggests that perhaps we can rely on the private-sector for biodiversity conservation and has received a great
deal of attention from subsequent academic and practitioner literatures (for example see [13,4,20,9,29]).

This controversy is important for two reasons. First, the practical implications for biodiversity conservation
are enormous. Second, the cause of the discrepancy in final estimates is of great consequence itself. If
information fundamentally changes conservation incentives, then re-allocating scientific resources to provide
such information may be the most efficient way to induce private conservation.

This paper makes three contributions. First we show, contrary to the conclusions of Rausser and Small, that
information has only a trivial effect on conservation values in this important application. Second, we carefully
examine the two models to illuminate the true source of the discrepancy in estimates of private-sector
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conservation incentives. We find that the main source is simply different parameter choices. However, the key
parameter choices are not defended in this literature. Third, we close this gap by assembling a defensible range
of model parameters from a review of the scientific literature, biodiversity databases, government reports, and
laboratory interviews. Based on these parameters, we resolve the outstanding question of the private-sector
conservation incentives from bioprospecting.

2. Impact of an ‘‘organizing scientific framework’’

Simpson et al. (SSR) couple a clever analytical argument with an empirical case study, to argue that land in
biodiversity hotspots has a bioprospecting marginal value of less than $21/ha—far too small to offset the
opportunity cost of development. The authors further argue that the values would always be small, regardless
of the probability that any given species will lead to a new product. Under low probability searches, any
research ‘‘lead’’ is unlikely to produce a successful innovation, and therefore has low value. But under high
probability searches, research leads are redundant, so scarcity rent is decreased, and any given lead has low
value.

The subsequent estimate of $9177/ha by Rausser and Small (RS) was therefore surprising—especially since
it was based on the same data used by SSR. The high values accruing to infra-marginal leads illustrates RS’s
theoretical point that scientific information lowers search cost and thus increases value. An ‘‘organizing
scientific framework’’ allows a collection of leads to be searched in the most efficient order, rather than in
effectively random order, as in SSR. Under informed search, rents accrue to the most promising leads because
searching these first may allow researchers to avoid future, less productive searches. Efficient search, RS
suggest, is responsible for the dramatic increase in marginal values. If the large discrepancy between results
does, in fact, derive from efficient search, one would expect random (or otherwise inefficient) search to obtain
values similar to those in SSR.

RS analyze theoretically the value of optimally ordered sequential search of a collection of research leads of
differing quality, where search terminates upon the first success. For each lead tested, a cost c is incurred. Lead
k yields a success worth R with probability pk. The key theoretical distinction from the approach of SSR is in
allowing the probabilities p to differ across leads, reflecting prior information about lead quality.

In this search model, the value of a collection of research leads is

XN

i¼1

aiðpiR� cÞ, (1)

where ai ¼
Qi�1

j¼1ð1� pjÞ. Here, the term piR� c represents expected return from searching lead i. The term ai

is the probability of searching lead i, or equivalently of failing to find an earlier success. The marginal value of
a research lead, k, is simply the difference between the value of the ordered collection containing lead k and the
value of the same collection excluding lead k. RS derive an iterative formula to calculate the marginal value of
a research lead via backwards induction. That formula can equivalently be expressed as
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. (2)

In their bioprospecting example illustrating this theory, RS treat each area of land in a biological hotspot as
a research lead.1 To calculate a net present marginal value per hectare of land, RS multiply (2) by the number
of tests per year, discount, and divide by 1000 (to convert the value per kilohectare to a value per hectare),
yielding the final marginal value formula:

mvk ¼ nk

lð1þ rÞ

1000r
, (3)
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1SSR treat each species as a research lead, a difference to which we return.
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