

Available online at www.sciencedirect.com

Surface Science 598 (2005) 35-44

Interaction of SiH₃ radicals with deuterated (hydrogenated) amorphous silicon surfaces

Sumit Agarwal ^{a,b}, Mayur S. Valipa ^{a,b}, Bram Hoex ^c, M.C.M. van de Sanden ^c, Dimitrios Maroudas ^b, Eray S. Aydil ^{d,*}

^a Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA

^b Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003-3110, USA

Received 1 May 2005; accepted for publication 15 September 2005 Available online 21 October 2005

Abstract

Interactions of SiH₃ radicals with surfaces of deuterated amorphous silicon (a-Si:D) and hydrogenated amorphous silicon (a-Si:H) films were studied using attenuated total reflection Fourier transform infrared spectroscopy and molecular-dynamics simulations, respectively. SiH₃ radicals abstract surface silicon deuterides through an Eley–Rideal abstraction reaction. Surface deuteride abstraction occurs on the same time scale as SiH₃ insertion into Si–Si bonds over the substrate temperature range of 60–300 °C. Some fraction of SiH₃ adsorbing on the a-Si:D/a-Si:H films dissociates and releases H into the subsurface. These observations are consistent with the temperature independent reaction probability of SiH₃ and the temperature dependent smoothening mechanism of a-Si:H thin films. © 2005 Elsevier B.V. All rights reserved.

Keywords: Amorphous surfaces; Amorphous thin films; Chemical vapor deposition; Plasma processing; Silane; Silicon; Surface chemical reaction

1. Introduction

Hydrogenated amorphous silicon (a-Si:H) thin films used in photovoltaic devices and thin-film

E-mail address: aydil@umn.edu (E.S. Aydil).

transistors for flat panel displays are deposited from SiH₄ containing plasmas [1,2]. The microstructure and electronic properties of plasmadeposited a-Si:H films depend strongly on the interactions of reactive radicals produced in the discharge (SiH_x: $0 \le x \le 3$, H) with the film surface [2,3]. Of the radicals that impinge on the a-Si:H growth surface, SiH₃ is believed to be the

^c Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands ^d Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA

 $^{^{\}ast}$ Corresponding author. Tel.: +1 612 625 8593; fax: +1 612 626 7246.

dominant precursor for device-quality a-Si:H film growth [4]. There are several key observations in a-Si:H film deposition, for which the microscopic mechanisms are not yet completely understood. For example, surfaces of the a-Si:H films deposited under conditions where SiH₃ is the dominant precursor are remarkably smooth (~10 Å root-meansquare roughness). The smoothness of these device-quality a-Si:H films is attributed to the high mobility of SiH₃ on an H-terminated surface [5] which has a very low fractional dangling-bond coverage ($\sim 10^{-2}-10^{-3}$) [6]; the mobility of SiH₃ on a-Si:H surfaces has been confirmed by molecular-dynamics (MD) simulations [7]. Several experiments have also shown that the overall surface reaction probability, $\beta \sim 0.3$ [4,5,8–12], for SiH₃ is independent of the deposition temperature at temperatures below 400 °C [4,5,11,12].

A better knowledge of the various reactions of SiH₃ with a-Si:H surfaces is required to address these outstanding issues in a-Si:H deposition. In this article, we report on the reactions of SiH₃ with an a-Si:D surface examined using surface-sensitive in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy [13,14]. We also discuss MD simulation results for the dissociative adsorption of SiH₃ radicals on the a-Si:H surface and the subsequent release of H atoms into the subsurface region of the a-Si:H film, which corroborate our experimental observations. In our experiments, we have used a-Si:D films in order to observe the replacement of D atoms in the film with H atoms from SiH₃ using infrared (IR) spectroscopy.

2. Experimental

The experiments were conducted in a high-vacuum parallel-plate capacitively-coupled plasma reactor with equipment for in situ ATR-FTIR spectroscopy. The ATR-FTIR setup is identical to that described in a previous publication [15]. In this study, the plasma was generated by applying radio frequency (rf) power at 13.56 MHz between two stainless-steel parallel plates. The distance between the parallel plates was 4 cm and the applied rf power was 20 W. a-Si:D films were deposited on GaAs

substrates placed on the grounded electrode, whose temperature was maintained at 300 °C during the 20-min film deposition time. The flow rate of SiD₄ (2% SiD₄, 98% Ar) into the plasma chamber was 25 standard cm³/min, while the pressure was maintained at 50 mTorr. After deposition of the a-Si:D films, their surface was exposed to SiH₃ radicals produced by thermally dissociating SiH₄ on a resistively heated tungsten filament as shown schematically in Fig. 1. Thermal dissociation of SiH₄ produces other radicals, such as Si and H, in addition to SiH₃ [16] and care must be taken to separate SiH₃ from the other radicals. To accomplish this, the line of sight between the hot filament and the GaAs substrate was blocked with a shutter and

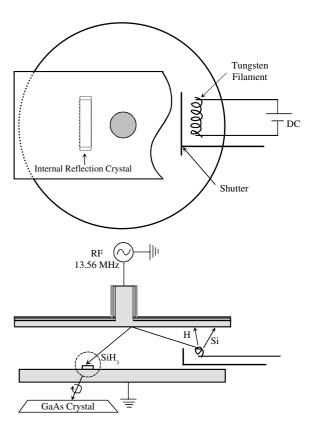


Fig. 1. Top and side view of the experimental setup for SiH₃ exposure of a-Si:D films deposited using a parallel-plate capacitively-coupled plasma. SiH₃ exposure was through the dissociation of SiH₄ on the hot wire with the line of sight between the GaAs substrate and the hot wire blocked with a shutter. This eliminated radicals other than SiH₃ also produced on a hot filament, such as Si and H, from reaching the substrate.

Download English Version:

https://daneshyari.com/en/article/9594988

Download Persian Version:

https://daneshyari.com/article/9594988

<u>Daneshyari.com</u>