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1. Introduction

Despite the increasing acceptance of the likelihood ratio (LR)
approach of evidence evaluation in forensic science [1], computa-
tion of LR values still remains a challenge. There are many factors
that may lead to values of the LR supporting the wrong proposition
in a case, an effect known as misleading evidence [2]. If this happens,
the LR values are said to present bad performance. Those factors
may include sparsity of the databases used as populations [3,4],
mismatch in the conditions of the elements in the population
databases and in the evidence [5,6], degraded quality or quantity of
the evidential materials [7–9], and so forth.

Good performance of the LR is essential in casework. Otherwise,
misleading LR values in court may lead fact finders to wrong
decisions. This idea is the main motivation behind the establish-
ment of validation procedures for evidence evaluation methods, as
a way to establish procedures to control and allow the use of LR
models in casework. These validation procedures of evidence
evaluation methods should be based on a careful process of
performance measurement.

Motivated by this critical problem, in this work we adopt a
methodology for the measurement of performance of LR methods
in forensic science based on so-called Strictly Proper Scoring Rules
(SPSR) [10–12] that has solid grounds on Bayesian statistics. The
main contribution of this work is highlighting the importance of a

property of a set of LR values called calibration, and its relationship
with the desirable behavior that the LR should have. Also, although
the SPSR methodology is not new, we adapt it to the LR framework
for forensic evaluation inference; and we describe a useful
representation of the performance of LR values in terms of SPSR
and calibration: the Empirical Cross-Entropy (ECE) plot. This
methodology for measuring calibration is not intended to replace
other methods for measuring performance of the LR, based on e.g.

Tippett plots or other measurements over the numerator and the
denominator of the LR separately. Conversely, we show in this
article that measuring the calibration of the LR is an excellent
complement to all those methods, in order to have a deep analysis
of the performance of the LR with views to a validation process of
LR computation in forensic science. In this sense, the example
shown in this article illustrate the adequacy and complementarity
of using ECE plots in addition to Tippett plots.

Calibration is understood here as a property of a set of LR values,
which can be measured. Although the term calibration has been
recently used to denote a process for obtaining likelihood ratios,
we do not follow that meaning in this article. Therefore, our
proposal in this article is not about methods to compute the LR, but
a methodology to measure the performance and the calibration of a
set of LR values, no matter how they were computed. Thus, LR
values can be computed using e.g. widely accepted models which
assign probabilities separately to the numerator and the denomi-
nator of the LR (such as the ones described in [13]), and the
calibration of the LR values can be measured for those LR values
using the methodology proposed in this article.

The article is organized as follows. First, we present the
performance assessment methodology based on SPSR, particularizing
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A B S T R A C T

Calculation of likelihood ratios (LR) in evidence evaluation still presents major challenges in many

forensic disciplines: for instance, an incorrect selection of databases, a bad choice of statistical models,

low quantity and bad quality of the evidence are factors that may lead to likelihood ratios supporting the

wrong proposition in a given case. However, measuring performance of LR values is not straightforward,

and adequate metrics should be defined and used. With this objective, in this work we describe the

concept of calibration, a property of a set of LR values. We highlight that some desirable behavior of LR

values happens if they are well calibrated. Moreover, we propose a tool for representing performance,

the Empirical Cross-Entropy (ECE) plot, showing that it can explicitly measure calibration of LR values.

We finally describe some examples using speech evidence, where the usefulness of ECE plots and the

measurement of calibration is shown.
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in the classical example of weather forecasting. Then, we intuitively
define and describe the concept of calibration. After that, we give
reasons that reveal that it is not straightforward to directly apply this
methodology to forensic science, and we describe the ECE plot as a
solution to overcome those difficulties. Finally, we present experi-
mental examples in forensic speaker recognition where the
properties of well-calibrated likelihood ratios are highlighted, after
which we draw some conclusions.

2. Measuring performance of probabilistic assessments

In this work, we start by adopting a methodology for measuring
performance based on Strictly Proper Scoring Rules (SPSR) [10,12],
which is not new and has been studied for decades in Bayesian
statistics. We begin with a classical example that has motivated
abundant research: the elicitation of probabilistic assessments for
weather forecasting [14,11].

2.1. Probabilistic weather forecasting

Consider an unknown variable, say u, whose value we want to
know. Let u be binary, which means that it only can take one out
of 2 values: either u = up or u = ud.1 In the weather forecasting
example we are going to assume that the unknown variable u
refers to a particular day in the future. We therefore denote u(i)

as the corresponding variable u for day i. Thus, in that context
the values of uðiÞ 2 u p; ud

� �
, with the following meaning for day i:

� up: it rains in day i.
� ud: it does not rain in day i.

A probabilistic weather forecaster, or simply a forecaster, is
defined as someone who assigns probabilities for u(i) = up or
u(i) = ud before the value of u(i) is known, aiming at predicting its
value. The mechanism by which the forecaster assigns probabili-
ties does not need to be known, but it can be said that, as any other
probabilistic assignment, it must consider all the knowledge
available to the forecaster, say K [15]. The probability that u(i) = up

given K is then denoted as P(u(i) = up|K) which, in words of the
forecaster, should be read the probability that it rains in day i in the

future, given all my available knowledge K. We denote K, the
available knowledge, as an observed value, in the sense that it is
known and fixed. It may include the education, experience and
preferences of the forecaster; some data in which the forecaster is
basing their assessment; a statistical model; etc. All the resources
that are known to the forecaster and used in some way for the
elicitation of the probabilistic forecast are included in K, no matter
their origin.

For simplicity and convenience, we will eliminate the reference
to the day i from the notation when it is clear from the context.
Therefore, in those cases we will denote u(i) � u and
P(u(i) = up|K) � P(up|K). Moreover, by definition of up and ud, both
values have to be complementary, i.e., P(up|K) = 1 � P(ud|K).

We assume that at the end of day i the actual value of u(i) in
day i and all past days will be known. In other words, at the end
of the current day the fact of whether it rained or not in any
day in the past will be known. Thus, the forecaster will
elicit forecasts for future days from day i, when u is actually
unknown.

Notice that P(u(i) = up|K) denotes a probability of the value of the
variable of interest (u) given all the available, observed knowledge
K. In Bayesian inference, this is known as a posterior probability,
and therefore probabilistic weather forecasters assign posterior
probabilities.

2.2. Performance of probabilistic assessments: strictly proper scoring

rules

During decades, Bayesian statisticians have been seriously
concerned about the elicitation of probabilistic assessments
[10,16,17], which can be understood given the Bayesian interpre-
tation of probability as a degree of belief [18,19]. In this topic of
research, one of the main questions under study has always been
the performance of the probabilistic assessments, that can be
summarized as follows: if someone is eliciting probability
assessments (according to a given model and data, or based on
personal experience), how can we evaluate how they perform?

Contextualizing to our weather forecasting example, we can get
some intuition about how to evaluate the performance of one
single probabilistic assessment of the forecaster. Imagine that the
forecaster assigns a probability of raining for tomorrow (day i) as
P(up|K) = 0.9. Then, after two days it turns out that it did actually
rain in day i, i.e. u = up. As the probability given by the forecaster to
the value of u that actually occured (up) is fairly high, then for that
particular probabilistic assessment the forecaster did a good work.
Therefore, if an external evaluator would assign a cost (or penalty)
to that particular forecast, that penalty should be low. However, if
the forecaster would have assigned P(up|K) = 0.1, then that forecast
would not have been a good one, since the probability for what it
actually happened (it rained, up) would have been low. These
examples suggest that, in order to evaluate a single forecast, two
elements are needed: the probability distribution of u as assigned
by the forecaster (the probability of rain in day i, P(up|K)), and the
actual value of the variable u, that was unknown by the forecaster,
but it is known when performance is to be measured.

According to this intuition in Bayesian statistics the perfor-
mance of probabilistic assessments has been classically addressed
by the use of Strictly Proper Scoring Rules (SPSR) [10–12]. A SPSR is
a function both of a probability distribution assigned to a given
unknown variable, and the actual value of the variable. The value of
the SPSR will be interpreted as a loss or a cost given to the
probability distribution depending on the actual value of the
variable. In this work we will use the logarithmic SPSR, which is
defined as follows2:

CðPðu pjKÞ; uÞ ¼ �log2ðPðu pjKÞÞ if u ¼ u p;
�log2ð1 � Pðu pjKÞÞ if u ¼ ud:

�
(1)

where CðPðu pjKÞ; uÞ represents the SPSR as a function of P(up|K) and
the actual value of u. The intuition behind SPSR will be exemplified
with the representation of the logarithmic SPSR in Fig. 1. The
figure shows the two possible values of the logarithmic SPSR
depending on the actual value of u, as a function of P(ud|K).
According to Eq. (1), if u = up (it actually rained in day i), the SPSR
assigns a high penalty to low values of P(ud|K), and vice-versa. This
corresponds to the fact that, if the weather forecaster expressed a
high probability of rain in day i (high P(ud|K)), and it actually
rained (u = up), then the penalty should be low, and vice-versa. In
the limit, if the forecaster expressed a categorical probability of
P(ud|K) = 0 (i.e., it is impossible that tomorrow it will rain), and it
actually rained, the penalty will be infinite for the logarithmic
SPSR.3 From Fig. 1, an analogous reasoning can be followed for the
case where u = ud (it did not rain in day i), where forecasts

1 We adopt this notation intentionally, because we ultimately aim at the forensic

inference problem.

2 There are strong reasons to prefer the logarithmic scoring rule to other SPSR, but

they are out of the scope of this work, see [20,21] for details. The base of the

logarithm is irrelevant for the expositions. We use base-2 logarithms for

information-theoretical reasons, that are explained in [22].
3 This is, in fact, one desirable property of the logarithmis SPSR, if it is assumed

that someone who categorically expresses a wrong judgement should be the worst

possible forecaster.

D. Ramos, J. Gonzalez-Rodriguez / Forensic Science International 230 (2013) 156–169 157



Download English Version:

https://daneshyari.com/en/article/96007

Download Persian Version:

https://daneshyari.com/article/96007

Daneshyari.com

https://daneshyari.com/en/article/96007
https://daneshyari.com/article/96007
https://daneshyari.com

