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a b s t r a c t

We develop a discrete-time stochastic volatility option pricing model exploiting the

information contained in the Realized Volatility (RV), which is used as a proxy of the

unobservable log-return volatility. We model the RV dynamics by a simple and effective

long-memory process, whose parameters can be easily estimated using historical data.

Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic

change of measure. An empirical analysis of Standard and Poor’s 500 index options

illustrates that our model outperforms competing time-varying and stochastic volatility

option pricing models.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well established that proper use of intraday price
observations leads to precise and accurate measurement
and forecast of the unobservable asset volatility. At the
same time, volatility is the primary ingredient of every
option pricing model. In this paper, combining both these

aspects, we develop a new option pricing model that
effectively incorporates the information contained in
high-frequency data, as summarized by the Realized
Volatility (RV) measure.1

The RV is an easy-to-compute nonparametric measure
of the asset variability, and it is typically constructed from
the intraday price movements. This allows the RV to
change rapidly according to the market’s movements.
We show that such a reliable volatility measure yields
accurate pricing of short-term options. Moreover, we
show that our model is able to mimic the long-memory
characterizing the volatility process,2 leading also to
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1 The idea of RV measures goes back to the seminal work of Merton

(1980), which shows that the integrated variance of a Brownian motion

can be approximated by the sum of a large number of intraday squared

returns. This original intuition has been recently formalized and general-

ized by Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Barndorff-

Nielsen and Shephard (2001, 2002a, 2002b, 2005), and Comte and

Renault (1998).
2 See, e.g., Andersen, Bollerslev, Diebold, and Labys (2001, 2003) and

Andersen, Bollerslev, Diebold, and Ebens (2001).
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accurate pricing of long-term options. Thus, both the fast-
changing dynamics inherent in the RV and the simple
long-memory structure allow our model to reproduce a
realistic Implied Volatility (IV) term structure under
different market conditions (e.g., different volatility
regimes). The improvements on the pricing performances
yielded by GARCH-type option pricing models, that rely
on the volatility filtered solely from daily returns, are
remarkable. Indeed, in terms of Root Mean Square Error
on IV (RMSEIV), the overall improvements on the exten-
sion of the Heston and Nandi (2000) GARCH recently
proposed by Christoffersen, Jacobs, and Heston (2011)
and the Component GARCH of Christoffersen, Jacobs,
Ornthanalai, and Wang (2008) are 14% and 26%, respec-
tively. Finally, the use of RV as a proxy for the unobser-
vable volatility simplifies the estimation considerably:
filtering procedures are no longer required, and the model
can be estimated directly using the observed RV, as
obtained from high-frequency data.

Surprisingly, to the best of our knowledge, little work
has been devoted to combining RV literature with that on
option pricing to construct RV option pricing models.
Notable exceptions are the work of Stentoft (2008) and
Christoffersen, Feunou, Jacobs, and Meddahi (2010).
In Stentoft (2008), an Inverse Gaussian model of a
30-minute returns RV measure is applied to price options
on some individual stocks. However, this work does not
provide a formal change of measure for the RV process,
since it only considers the case in which the risk-neutral
and physical dynamics of RV are identical (i.e., when
the volatility risk is not priced). In a concurrent paper,
Christoffersen, Feunou, Jacobs, and Meddahi (2010) gen-
eralize the GARCH option pricing approach by extending
the Heston and Nandi (2000) GARCH model to include RV
measures. However, they focus mainly on the RV’s con-
tribution to short- and medium-term option pricing.

Indeed, so far, only marginal attention has been
devoted to the long-term part of the IV surface, where
the persistence of the volatility process plays a crucial
role. Two exceptions are Comte, Coutin, and Renault
(2012), who employ a fractional stochastic volatility
model, and Carr and Wu (2003), who apply alpha-stable
processes to slow down the central limit theorem and
obtain negative skewness and excess kurtosis for long-
maturity options.

Moreover, a growing strand of literature advocates the
presence of a multi-components volatility structure. For
instance, Li and Zhang (2010), using nonlinear principal
components analysis, find that two factors are needed to
explain the variation in the IV surface. Christoffersen,
Jacobs, Ornthanalai, and Wang (2008) employ a modified
version of the two-factor component GARCH in Engle and
Lee (1999) for options pricing in discrete-time, while
Bates (2000) proposes a two-factor jump-diffusion model
to fit the implicit distribution in futures options. In
addition, Adrian and Rosenberg (2008) show that a multi-
components volatility model substantially improves the
cross-sectional pricing of volatility risk.

In this paper, we combine all these streams of literature
and we introduce a new class of models that rely on the RV,
featuring long-memory, multi-components structure, and

analytical tractability. We model the conditional mean of
the volatility process by the Heterogeneous Autoregressive
(HAR) multi-components model (see Corsi, 2009). The HAR
specification can be considered as an acceptable compro-
mise between parameter parsimony and multi-components
specification. Despite the fact that the HAR model does not
formally belong to the class of long-memory processes, it is
able to produce the same memory persistence observed in
financial data. Moreover, its multi-component specification
is important in providing the necessary smoothing of
the otherwise too noisy (for option pricing purposes) RV
measure. For these reasons the HAR has become one of
the standard models for describing and forecasting the
dynamics of RV.3 The HAR model provides only the first
conditional moment of the RV. In order to specify the whole
transition density and complete the probabilistic description
of the RV process, we assume that the conditional distribu-
tion of the HAR is a noncentral gamma. The noncentral
gamma is the same transition density implied by the Cox,
Ingersoll, and Ross (1985) (CIR) model, widely applied to
describe the dynamics of the volatility process. The resulting
model belongs to the family of autoregressive gamma
processes, a class of discrete-time affine processes intro-
duced by Gourieroux and Jasiak (2006). Due to this combi-
nation, our new model features both long-memory and
affine structure. The latter feature is particularly attractive
for option pricing purposes since, as with the affine pro-
cesses, it leads to a fully analytic conditional Laplace trans-
form. In order to capture the asymmetric shape of the IV
smile for S&P 500 options, we include the leverage effect.
The resulting model is extremely flexible for option pricing
purposes. Moreover, considering restricted versions of this
general model, we are able to disentangle the contribution
of the different model ingredients (i.e., long-memory and
leverage) to the overall pricing performance.

The paper is organized as follows. Section 2 defines our
model for log-return and RV under both the historical and
risk-neutral probability measures. Section 3 describes the
estimation of the model, and then analyses its dynamic
features. In Section 4, we present the option pricing
performances, compare them with option pricing bench-
marks, and perform several robustness checks. Finally,
Section 5 summarizes the results.

2. The model

2.1. Dynamics under physical probability

2.1.1. Log-return dynamics

A well-established result in financial econometrics liter-
ature is that the marginal distribution of daily log-return

3 Andersen, Bollerslev, and Diebold (2007a), Aı̈t-Sahalia and Mancini

(2008), McAleer and Medeiros (2008), Busch, Christensen, and Nielsen

(2011), and Andersen, Bollerslev, and Huang (2011) use this model (and

its extensions) to forecast the RV; Clements, Galv ~ao, and Kim (2008) and

Maheu and McCurdy (2011) implement it for risk management;

Bollerslev, Tauchen, and Zhou (2009) use it to analyze the risk-return

trade-off; Andersen and Benzoni (2010) employ it to test whether bond

yields span volatility risk; and Bollerslev and Todorov (2011) adopt it for

modeling the expected Integrated Volatility to compute the Investor

Fear Index.

F. Corsi et al. / Journal of Financial Economics 107 (2013) 284–304 285



Download English Version:

https://daneshyari.com/en/article/960187

Download Persian Version:

https://daneshyari.com/article/960187

Daneshyari.com

https://daneshyari.com/en/article/960187
https://daneshyari.com/article/960187
https://daneshyari.com

