

Available online at www.sciencedirect.com

Catalysis Today 100 (2005) 37-47

Selective catalytic reduction of NO_x over Ag/Al₂O₃ catalyst: from reaction mechanism to diesel engine test

Hong He*, Yunbo Yu

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China

Available online 24 March 2005

Abstract

Our recent research works on the selective catalytic reduction (SCR) of diesel engine NO_x by hydrocarbons over alumina-supported silver (Ag/Al₂O₃) were reviewed. The reaction mechanism of the SCR of NO_x by C_2H_5OH over Ag/Al₂O₃ was studied using in situ DRIFTS and DFT calculations. A novel enolic species originating from the partial oxidation of C_2H_5OH and C_3H_6 , was found on the surface of Ag/Al₂O₃ during the SCR of NO_x by in situ DRIFTS, which was also supported by DFT calculations. Based on this, a mechanism of the NO_x reduction was proposed, which can successfully explain the high efficiency of the NO_x reduction by C_2H_5OH over Ag/Al₂O₃. A palladium promoted Ag/Al₂O₃ catalyst (denoted Ag–Pd/Al₂O₃) was developed for the SCR of NO_x by C_3H_6 . The Ag–Pd/Al₂O₃ showed a higher NO_x conversion than Ag/Al₂O₃, especially at temperatures ranging from 300 to 450 °C. The engine bench tests showed that the average NO_x conversion was greater than 80% in the diesel engine exhaust temperature range of 300–400 °C using our catalytic converter with C_2H_5OH as reductant, which represents a leap from the Euro II standard to the Euro III standard for NO_x emission control in diesel engines. (© 2004 Elsevier B.V. All rights reserved.

Keywords: Selective catalytic reduction (SCR) of NO_x; Alumina supported silver (Ag/Al₂O₃); Ethanol (C₂H₅OH); Diesel engine; Enolic species

1. Introduction

Due to shortages of petroleum resources, lean-burn engines have become the main option for the vehicles. The diesel engine, which is a typical lean-burn engine, has the advantage of lower consumption of fuel and lower emission of CO₂, CO and HC than stoichiometric gasoline engine. However, the exhaust from diesel engines contains a large amount of NO_x compared to stoichiometric gasoline engines equipped with three-way catalysts (TWCs). For a stoichiometric gasoline engine, a TWC provides a very high level of emission control for the removal of CO, NO_x, and unburnt hydrocarbons. However, diesel engines produce exhaust containing a large excess of oxygen. The platinum group metals based TWCs are completely ineffective for NO_x reduction under the oxygen-rich conditions. Removal of NO_x in the oxygen-rich exhausts demands a novel catalyst for a selective catalytic reduction (SCR) of NO_x. The SCR of NO_{x} by ammonia, or in some cases, urea, has become a fairly mature technology for stationary applications [1-4]. For mobile applications such as diesel trucks and some leanburn gasoline cars, however, commercialization still lies somewhere in the future. Up to now, multifarious catalysts such as zeolitic oxide, base oxide/metal and noble metal catalysts have been found to be effective for NO_x reduction in the presence of excess oxygen [3,5–8]. Among them Ag/ Al₂O₃ is known as one of the most effective catalysts for the SCR of NO_x by hydrocarbons [9–45]. In particular, C₂H₅OH is extremely effective for NO_x reduction over Ag/Al₂O₃ [10,11,17,36,38,41,46–51].

In this review, our recent research on the HC–SCR of NO_x over Ag/Al₂O₃ was summarized systematically on a laboratory scale and an actual diesel engine bench scale. Also, our results provided new insight into the mechanism of this NO_x reduction process.

2. Characterization and fundamental performance of Ag/Al_2O_3 in the SCR of NO_x

The supported catalysts, Ag/Al_2O_3 and Cu/Al_2O_3 , were prepared by an impregnation method with an aqueous solution of silver and copper nitrate, followed by evapora-

^{*} Corresponding author. Tel.: +86 10 62849123; fax: +86 10 62849123. *E-mail address:* honghe@mail.rcees.ac.cn (H. He).

^{0920-5861/\$ –} see front matter 0 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.cattod.2004.11.006

Table 1 BET surface area, pore volume and pore diameter of Ag/Al₂O₃ catalysts with different Ag loadings

Catalyst	BET surface area $(m^2 g^{-1})$	Pore volume $(cc g^{-1})$	Pore diameter (A)
2 wt.% Ag/Al ₂ O ₃	239.8	0.7235	122.9
4 wt.% Ag/Al ₂ O ₃	222.4	0.7107	124.9
6 wt.% Ag/Al ₂ O ₃	211.8	0.6950	126.2
8 wt.% Ag/Al ₂ O ₃	209.9	0.6493	130.3

tion to dryness in a rotary evaporator under pressure reduction at 60 $^{\circ}$ C. The wet sample was dried at 120 $^{\circ}$ C for 12 h, and then calcined in air at 600 $^{\circ}$ C for 3 h [39].

BET results of the catalysts are shown in Table 1. The surface area of the Ag/Al₂O₃ catalysts gradually decreased with increasing silver loading. XRD patterns of a series of Ag/Al₂O₃ catalysts are shown in Fig. 1. Only the γ -Al₂O₃ phase was detected as the silver loading increased from 2 to 6 wt.%, but the Ag and Ag₂O phases were observed at 2 θ of 33.76°, 38.12°, 44.36° and 64.46° with 8 wt.% Ag loading [52,53]. TEM images of 4% Ag/Al₂O₃ catalyst are shown in Fig. 2. The Ag containing particles could be distributed evenly on the surface of Al₂O₃ with an optimum Ag loading of 4–6% and an average size of 15 nm.

Fig. 3 shows the NO_x conversions for the SCR of NO_x by C_3H_6 over Ag/Al₂O₃ catalysts with different silver loadings at various temperatures. The maximum of NO_x conversion increased significantly with an increase in silver loading from 2 to 4 wt.%, and the temperature at which the maximum NO_x conversion could be obtained (i.e. T_{max}) shifted towards a lower temperature. Further increase of the silver loading from 4 to 8 wt.% did not show any promotion of low-temperature NO_x conversion but inhibited the high temperature conversion.

(SC) Ag(CO) (CO) Ag(CO) Ag(CO) (CO) (CO) (CO) (CO) (CO)

Fig. 1. XRD patterns of Ag/Al₂O₃ catalysts with different Ag loadings [39].

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Fig. 2. TEM image of 4% Ag/Al₂O₃.

The NO_x conversions for the SCR of NO_x by C₂H₅OH over Ag/Al₂O₃ catalysts with different silver loadings are shown in Fig. 4. As same as in Fig. 3, the maximum of NO_x conversion increased significantly with an increase in silver loading from 2 to 4 wt.%, and the temperature at which the

Fig. 3. NO_x conversion for the SCR of NO_x by C_3H_6 over Ag/Al₂O₃: (\blacksquare) 2 wt.%, (\blacktriangle) 4 wt.%, (\bigtriangledown) 6 wt.% and (\blacklozenge) 8 wt.% at various temperatures. Conditions: 800 ppm NO, 1714 ppm C_3H_6 , 10 vol.% O₂/N₂, catalyst weight = 1.2 g, *W/F* = 0.018 g s cm⁻³ [39].

Download English Version:

https://daneshyari.com/en/article/9610537

Download Persian Version:

https://daneshyari.com/article/9610537

Daneshyari.com