
Journal of Health Economics 29 (2010) 468–477

Contents lists available at ScienceDirect

Journal of Health Economics

journa l homepage: www.e lsev ier .com/ locate /econbase

Simulation sample sizes for Monte Carlo partial EVPI calculations

Jeremy E. Oakleya,∗, Alan Brennanb, Paul Tappendenb, Jim Chilcottb

a Department of Probability and Statistics, University of Sheffield, The Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
b School of Health and Related Research, University of Sheffield, UK

a r t i c l e i n f o

Article history:
Received 22 February 2007
Received in revised form
10 November 2009
Accepted 10 March 2010
Available online 17 March 2010

JEL classification:
I18
C110
C150

Keywords:
Economic model
Expected value of perfect information
Monte Carlo estimation
Bayesian decision theory

a b s t r a c t

Partial expected value of perfect information (EVPI) quantifies the value of removing uncertainty about
unknown parameters in a decision model. EVPIs can be computed via Monte Carlo methods. An outer loop
samples values of the parameters of interest, and an inner loop samples the remaining parameters from
their conditional distribution. This nested Monte Carlo approach can result in biased estimates if small
numbers of inner samples are used and can require a large number of model runs for accurate partial EVPI
estimates. We present a simple algorithm to estimate the EVPI bias and confidence interval width for a
specified number of inner and outer samples. The algorithm uses a relatively small number of model runs
(we suggest approximately 600), is quick to compute, and can help determine how many outer and inner
iterations are needed for a desired level of accuracy. We test our algorithm using three case studies.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is common practice to use decision models to estimate
the expected net benefit of alternative strategy options open to
a decision maker (Raiffa, 1968; Brennan and Akehurst, 2000).
Invariably in health economic cost-effectiveness models, the input
parameters’ true values are not known with certainty. A prob-
abilistic sensitivity analysis will then be required to investigate
the consequences of this input parameter uncertainty (Briggs and
Gray, 1999). Simple Monte Carlo propagation of input uncertainty
through the model can provide an estimate of the distribution
of net benefit, thus giving its expected value, and the probability
that the incremental net benefit will be positive (Van Hout et al.,
1994).

More detailed analysis can compute the partial expected value
of perfect information (partial EVPI), that is, the value to the deci-
sion maker of learning the true value of the uncertain parameter
input before deciding whether to adopt the new treatment (Raiffa,
1968; Claxton and Posnett, 1996). Partial EVPIs are recommended
because they quantify the importance of different parameters using
decision-theoretic arguments (Claxton, 1999; Meltzer, 2001), and
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thus can quantify the societal value of further data collection to help
design and prioritise research projects (Claxton and Thompson,
2001; Chilcott et al., 2003a). Unfortunately, evaluating partial EVPIs
is computationally demanding. Generally, a two level Monte Carlo
procedure is needed, requiring many runs of the economic model.
A developing literature has described this more and more clearly
(Felli and Hazen, 1998, 2003; Brennan et al., 2002, 2007; Ades et al.,
2004; Yokota and Thompson, 2004; Koerkamp et al., 2006; Brennan
and Kharroubi, 2007b). The procedure begins with an outer loop
sampling values of the parameters of interest, and for each of these,
an inner loop sampling the remaining parameters from their con-
ditional distribution (Brennan et al., 2002; Ades et al., 2004).

Increasingly large inner and outer sample sizes will produce
increasingly accurate estimates of partial EVPI. However, the
nested Monte Carlo approach can result in biased estimates if the
inner loop sample size is small (Brennan and Kharroubi, 2007a),
regardless of the outer loop sample size. Most studies recommend
‘large enough’ inner and outer samples, e.g. 1000 or 10,000 in order
to produce ‘accurate’ partial EVPI estimates, but none discuss in
detail the choice of sample sizes in relation to bias or confidence
interval widths.

In this paper we present an algorithm for determining the inner
and outer loop sample sizes needed to estimate a partial EVPI to a
required level of accuracy. We first review the theory of estimating
partial EVPIs via Monte Carlo. We propose using normal approxi-
mations for conditional expected net benefits to estimate the bias
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and variance of a Monte Carlo estimate for a specified number of
inner and outer loops. We set out an algorithm, using a moderate
number of model runs, to produce an estimate of the bias and confi-
dence interval widths for partial EVPI estimates, and hence to help
determine the inner and outer sample sizes needed. The results
of applying and testing the algorithm’s performance in three case
studies are given, followed by a discussion of how this approach
can be applied more generally to support Monte Carlo estimation
of partial EVPI.

If the decision model is complex, requiring substantial com-
putation time for each model run, then it may not be feasible to
do the number of model runs required for our algorithm, or the
algorithm may suggest that an infeasible number of model runs
are required for sufficiently accurate partial EVPI estimates. In this
case, one can use instead a Gaussian process meta-model, which
approximates the economic model, enabling more efficient Monte
Carlo sampling, but with the disadvantages that it is far more com-
plex to program initially and is not always feasible for models with
large numbers of uncertain input parameters (e.g. in excess of 100)
(Oakley, 2009; Oakley and O’Hagan, 2004; Stevenson et al., 2004).

2. Methods

2.1. Evaluating partial EVPI via Monte Carlo sampling

Suppose we have T treatment options, and our economic model
computes the net benefit NB(t, x) for treatment t = 1, . . . , T , when
provided with input parameters x. We denote the true, uncertain
values of the input parameters by X = {X1, . . . , Xd}, so that the true,
uncertain net benefit of treatment t is given by NB(t, X). When con-
sidering the partial EVPI of a particular parameter Xi, we use the
notation X−i = {X1, . . . , Xi−1, Xi+1, . . . , Xd} to denote all the inputs
in X except Xi. For any input X, we use subscripts to denote a par-
ticular input parameter (or group of parameters) in the economic
model, and a superscript to denote a randomly sampled value of
that input. Note that all of the equations presented, and indeed the
proposed algorithm, are the same if we are considering a group of
parameters Xi rather than a single scalar parameter.

We use the notation NB(t, X) = NB(t, Xi, X−i) and for expecta-
tions EX, EXi

and EX−i |Xi
denote expectations over the full joint

distribution of X, the marginal distribution of Xi, and the conditional
distribution of X−i|Xi, respectively.

The partial EVPI for the ith parameter Xi is given by

EVPI(Xi) = EXi

[
max

t
EX−i |Xi

{NB(t, Xi, X−i)}
]

− max
t

EX{NB(t, X)}. (1)

The second term in the RHS of (1) can be estimated by Monte
Carlo. We sample X(1), . . . , X(N) from the distribution of X, evalu-
ate NB(t, X(n)) for t = 1, . . . , T and n = 1, . . . , N, and then estimate
NB∗ = maxtEX{NB(t, X)} by

N̂B
∗ = max

t

1
N

N∑
n=1

NB(t, X(n)).

We do not consider the choice of N in this paper. In practice,
it is usually feasible to have N sufficiently large such that N̂B∗ is
an accurate estimate of NB∗, and can be used in the partial EVPI
estimate of any parameter or group of parameters.

In this paper we concentrate on estimating the first term in
the RHS of (1). We define the maximum conditional expected net
benefit given Xi as

m(Xi) = max
t

EX−i |Xi
{NB(t, Xi, X−i)},

and hence, the first term on the RHS of Eq. (1) can be written as
EXi

{m(Xi)}.
Typically, we cannot evaluate m(Xi) analytically, and so we esti-

mate it using Monte Carlo. We randomly sample J values of X−i

from the conditional distribution of X−i|Xi to obtain X(1)
−i

, . . . , X(J)
−i

.
We run the economic model for each of the J sampled inputs to
obtain NB(t, Xi, X(j)

−i
) for t = 1, . . . , T and j = 1, . . . , J, and estimate

m(Xi) by

m̂(Xi) = max
t

1
J

J∑
j=1

NB(t, Xi, X(j)
−i

). (2)

We now approximate EXi
{m(Xi)} by EXi

{m̂(Xi)}, and estimate

EXi
{m̂(Xi)} by randomly sampling K values X(1)

i
, . . . , X(K)

i
from the

distribution of Xi and computing the estimator

ÊXi
{m̂(Xi)} = 1

K

K∑
k=1

m̂{X(k)
i

}. (3)

We refer to the process of obtaining the maximum conditional
net benefit estimator m̂{Xi} for a single given Xi using J samples from
the distribution of X−i|Xi as the inner level Monte Carlo procedure.
The process of calculating (3) (given the values m̂(Xi,1), . . . , m̂(Xi,K ))

using the K samples X(1)
i

, . . . , X(K)
i

is the outer level Monte Carlo pro-
cedure. The Monte Carlo estimate for the partial EVPI for parameter
Xi is therefore

̂EVPI(Xi) = ÊXi
{m̂(Xi)} − N̂B

∗ = 1
K

K∑
k=1⎡⎣max

t

⎧⎨⎩1
J

J∑
j=1

NB(t, X(k)
i

, X(j,k)
−i

)

⎫⎬⎭
⎤⎦− max

t

1
N

N∑
n=1

NB(t, X(n)), (4)

where X(j,k)
−i

is the jth sample from the distribution of X−i|Xi = X(k)
i

.
The inner and outer level sample sizes, J and K, respectively, mean
that the total number of runs of the economic model required for
the partial EVPI estimate is J × K (given N̂B

∗
). The objective in this

paper is to determine what values of J and K should be used in order
to obtain a sufficiently accurate estimate of the partial EVPI.

2.2. Uncertainty and bias in Monte Carlo estimates of partial EVPI

Any Monte Carlo estimate of an expectation is subject to uncer-
tainty due to random sampling, and the larger the number of
samples, the more this uncertainty is reduced. We assume that N
is sufficiently large such that uncertainty in NB∗ is small relative
to uncertainty in EXi

{m(Xi)}. If K is sufficiently large then a normal
approximation will apply, and a 95% confidence interval for EVPI(Xi)
is given by(
̂EVPI(Xi) − 1.96

√
Var{m̂(Xi)}

K
, ̂EVPI(Xi) + 1.96

√
Var{m̂(Xi)}

K

)
.

(5)

This interval appears to suggest that to obtain a sufficiently
accurate estimate of the partial EVPI, we just need K to be large,
as the width of the confidence interval will decrease as K increases.
Unfortunately, this is not the case because, as we now show, m̂(Xi)
is an upwards biased estimator of m(Xi), and sôEVPI(Xi) is a biased
estimator of EVPI(Xi). The bias is independent of K, but it depends
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