

Available online at www.sciencedirect.com

Combustion and Flame 140 (2005) 371-384

Combustion and Flame

www.elsevier.com/locate/combustflame

A model of the dynamics of a fluidized bed combustor burning biomass

Antonio Galgano^a, Piero Salatino^a, Silvestro Crescitelli^a, Fabrizio Scala^{b,*}, Pier Luca Maffettone^c

^a Dipartimento di Ingegneria Chimica, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80-80125 Napoli, Italy
 ^b Istituto di Ricerche sulla Combustione—CNR, Piazzale Tecchio, 80-80125 Napoli, Italy
 ^c Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino Viale Duca degli Abruzzi, 24-10129 Torino, Italy

Received 31 July 2003; received in revised form 17 October 2004; accepted 19 December 2004

Available online 26 January 2005

Abstract

A dynamical model of an atmospheric, bubbling, fluidized bed combustor of biomass is presented. The model, based on one previously developed for the steady combustion of high-volatile solids, accounts for the fragmentation and attrition of fuel particles, the segregation and postcombustion of volatile matter above the bed, as well as thermal feedback from the splashing region to the bed. The model was used to assess how the dynamic behavior of the combustor varies with some of the operating parameters. To this end, a bifurcation analysis was first used to study the influence of selected parameters on the number and quality of steady state solutions. Moreover, direct integration of the governing equations provided a simulation of the dynamic behavior of the combustor after perturbing the parameters. Results of the bifurcation analysis indicated that extinction may take place through limit point bifurcations when varying the moisture content of the biomass and the flow rates of feed or air. Dynamic simulations showed that the bed temperature changes slowly when a stepwise change is imposed on one of the parameters. Either a new steady state or extinction eventually results, depending on the stepwise change. While relaxation of the bed temperature occurs rather slowly, the dynamics of the splashing region and of the freeboard are much faster, due to the shorter time-scales associated with homogeneous oxidation reactions. The relaxation time of the bed is determined by the heat capacity of the fluidized solids and by the fraction of the heat released recycling to the bed as thermal feedback.

© 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: Model; Fluidized bed; Biomass

1. Introduction

Fluidized bed combustion (FBC) is a viable technology for a variety of solid fuels, including coal, low-grade or "difficult" fuels, waste-derived or biomass fuels, alone or in combination with each other. In particular, biomass fuels provide an increasingly

* Corresponding author.

E-mail address: scala@irc.na.cnr.it (F. Scala).

0010-2180/\$ – see front matter © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved. doi:10.1016/j.combustflame.2004.12.006

Nomenclature

Α	Cross-sectional area of the bed $\dots m^2$
c_X	Specific heat of species $x \dots kJ/(kg K)$
C_x^y	Molar concentration of component x in
	section y kmol/m ³
d_{x}	Average diameter of particles belonging
	to phase <i>x</i>
F_0	Fuel feed mass flow rate kg/s
F_{0x}	Fuel feed mass flow rate into
0.1	phase <i>x</i> kg/s
F_{S}	Mass flux of ejected inert particles at the
	bed surface \dots $kg/(sm^2)$
G	Fines generation rate due to coarse
	particles fragmentation kg/s
h_x	Height of section x m
$h_{c,x}$	Particle heat transfer coefficient in
	section $x \dots kW/(Km^2)$
$h_{ m mf}$	Height of the bed at minimum
	fluidization conditions m
H	Moisture content in fresh feed
ΔH_{χ}	Heat of combustion of
	species x kJ/kg or $kJ/kmol$
$k_{x,y}$	Combustion kinetic coefficient of
	component x in section y \dots s ⁻¹
$k_{\rm el}$	Fines elutriation constant \dots s ⁻¹
$k_{\rm d}$	Devolatilization constant $\dots s^{-1}$
K _{be}	Mass transfer coefficient between dense
	phase and bubbles $\dots s^{-1}$
M_{χ}	Molecular weight of
	component x kg/kmol
$Q_{\rm air}$	Air inlet flow rate \dots N m ³ /s
t	time s
T_X	Temperature of phase <i>x</i> K
u _T	Coefficient in Eq. (3)
U_X	Velocity of phase <i>x</i> m/s
US	Heat transfer coefficient
	bed-walls kW/K
$W_{x,y}$	Mass of phase <i>x</i> in zone <i>y</i>
x_y	Mass fraction of component y
Z	Axial coordinate m

Greek symbols

ε_{bub}	Bed volume fraction occupied by bub-
	bles
$\varepsilon_{\rm eff}$	Char particles effective emissivity
$\varepsilon_{ m mf}$	Bed voidage at minimum fluidization
	condition
η	Combustion efficiency
λ_{vap}	Water latent heat of vaporization kJ/kg
ρ_x	Density of phase $x \dots kg/m^3$
$\rho_{gas,y}$	Gas density in section $y \dots kg/m^3$
σ	Stefan Boltzman constant $kW/(m^2 K^4)$
$\tau_{\rm S}$	Inert particles residence time in
5	splashing region s
ϕ_{xy}	global view factor related to region x
1.0.9	and y
χ	Total exposed surface area of ejected in-
	ert particles per unit bed cross-section
Ω	Integral defined in Eq. $(6) \dots \text{ kmol/m}^2$
Subscripts and superscripts	
С	Coarse char particles
F	Fine char particles
S	Inert particles
V	Volatile matter
bed	Bed
bub	Bubbles
dev	Devolatilization
fb	Freeboard
fc	Fixed carbon
gas	Gas phase
mf	Minimum fluidization
р	Inert particles
ref	Reference
sp	Splashing region
tot	Total
vap	Vaporization
water	Water
wall	Bed walls
0	Inlet

attractive primary energy source, due to their intrinsically renewable nature and potentially limited generation of pollutants. Biomass usually contains negligible sulfur, low nitrogen and heavy metals, and is considered neutral with respect to greenhouse gases. FBC of biomass fuels has been extensively investigated recently [1–8]. As far as the fate of combustibles is concerned, it has been recognized that two important features characterize the combustion of a biomass fuel, making it different from the combustion of a coal or other low-volatile solid fuels:

- Homogeneous combustion of volatile matter accounts for a large contribution to the overall heat release. This emphasizes the importance of mixing and segregation in the bed and of the actual location of where the volatile matter burns. In fact, the heat release profile in a combustor significantly affects its design and operation.
- 2. The loosely connected structures of the chars left after devolatilization makes their attrition important. This feature, together with the large intrinsic combustion reactivity of biomass chars,

Download English Version:

https://daneshyari.com/en/article/9624540

Download Persian Version:

https://daneshyari.com/article/9624540

Daneshyari.com