Available online at www.sciencedirect.com J. Chem. Thermodynamics 37 (2005) 984-995 www.elsevier.com/locate/jct Thermodynamics of complexation of aqueous 18-crown-6 with barium ion: apparent molar volumes and apparent molar heat capacities of aqueous (18-crown-6 + barium nitrate) at temperatures (278.15 to 393.15) K, at molalities (0.02 to 0.33) mol·kg⁻¹, and at the pressure 0.35 MPa S.P. Ziemer, T.L. Niederhauser, E.M. Woolley * Department of Chemistry and Biochemistry, College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602-5700, USA Received 12 November 2004; received in revised form 31 December 2004; accepted 4 January 2005 Available online 16 February 2005 #### Abstract We have measured the densities at T=(278.15 to 368.15) K and heat capacities at T=(278.15 to 393.15) K of aqueous solutions of $\{18\text{-crown-}6+\text{Ba}(\text{NO}_3)_2\}$ at molalities $m=(0.02 \text{ to } 0.33) \text{ mol} \cdot \text{kg}^{-1}$ and at the pressure 0.35 MPa. We have applied Young's rule and have accounted for chemical speciation and relaxation effects to resolve V_{ϕ} and $C_{\text{p},\phi}$ to include contributions of the 18-crown-6-Ba²⁺(aq) complex in the mixture. We have also calculated estimates of the change in volume $\Delta_{\text{r}}V_{\text{m}}$, the change in heat capacity $\Delta_{\text{r}}C_{\text{p,m}}$, the change in enthalpy $\Delta_{\text{r}}H_{\text{m}}$, and the equilibrium quotient $\lg Q$ for formation of the complex at T=(278.15 to 393.15) K and $m=(0 \text{ to } 0.33) \text{ mol} \cdot \text{kg}^{-1}$ in the mixture. © 2005 Elsevier Ltd. All rights reserved. Keywords: Apparent molar volume; Apparent molar heat capacity; 18-Crown-6; Barium nitrate; Young's rule ## 1. Introduction We recently reported the apparent molar volumes V_{ϕ} and apparent molar heat capacities $C_{\mathrm{p},\phi}$ for aqueous 18-crown-6 + KCl {(18C6 + KCl)}(aq) [1]. We have continued our investigations of the crown ether with other ions by studying the interaction of barium ion with 18C6 in water. Because of the almost identical ionic radii of $\mathrm{Ba^{2^+}}$ and $\mathrm{K^+}$, we expect the 18C6– $\mathrm{Ba^{2^+}}$ interaction to be stronger than that for 18C6– $\mathrm{K^+}$ due to the increased nuclear charge of $\mathrm{Ba^{2^+}}$. We report here experimental values of V_{ϕ} at T=(278.15 to 368.15) K and $C_{\mathrm{p},\phi}$ at E-mail address: earl_woolley@byu.edu (E.M. Woolley). $T = (278.15 \text{ to } 393.15) \text{ K for } \{18\text{C6} + \text{Ba}(\text{NO}_3)_2\}(\text{aq})$ at molalities $m = (0.02 \text{ to } 0.33) \text{ mol} \cdot \text{kg}^{-1}$ and at the pressure 0.35 MPa. We applied Young's rule to the results for $\{18C6 + Ba(NO_3)_2\}(aq)$ and accounted for chemical relaxation effects to resolve V_{ϕ} and $C_{p,\phi}$ to include contributions of the complex 18C6–Ba²⁺(aq). As with our previous work with (18C6-K⁺, Cl⁻)(aq) [1], we are also the first to report $C_{p,\phi}$ for $(18C6-Ba^{2+}, 2NO_3^-)(aq)$. We have again calculated estimates of the change in volume, $\Delta_r V_m$, the change in heat capacity, $\Delta_{\rm r}C_{\rm p,m}$, the change in enthalpy, $\Delta_{\rm r}H_{\rm m}$, and the equilibrium quotient $\lg Q$ for the complexation reaction over the same ranges of T and m using values of lg K and $\Delta_{\rm r} H_{\rm m}^{\circ}$ at T = 298.15 K from the literature. The literature values of $\Delta_r H_m^{\circ}$ and $\lg K$ for the formation of (18C6– Ba^{2+}) in water at T = 298.15 K were abundant and ^{*} Corresponding author. Tel.: +1 801 422 3669/378 2674; fax: +1 801 422 0550/378 2575. generally showed good agreement [2–12], with the reported values of $\lg K$ showing some scatter. A few investigators also reported values at other temperatures [2–4]. Values for $\Delta_r V_m$ were found only in reference [13]. ### 2. Experimental We used as received 18C6(c) (Sigma–Aldrich, Milwaukee, WI, USA, product 274984, lots 11630JB and 06004BI, reported purity 0.999 mass fraction, molar mass $M_2 = 264.3167 \text{ g} \cdot \text{mol}^{-1}$) and Ba(NO₃)₂(c) (Sigma–Aldrich, Milwaukee, WI, USA, product 202754, lot 06921TO, metal basis purity 0.99999 mass fraction, $M_2 = 261.3377 \text{ g} \cdot \text{mol}^{-1}$) to prepare aqueous solutions of {18C6 + Ba(NO₃)₂} with Ba(NO₃)₂ in slight excess as noted in table 1. Other details of solution preparation are as described elsewhere [14]. Solution densities were measured using a vibrating-tube densimeter (Model DMA 512, Anton PAAR, Austria), as described previously [15]. Solution massic heat capacities were measured using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetric Sciences Corporation, Lindon, UT, USA) as described previously [15]. Equations and procedures for the calculation of solution densities $\rho_{\rm s}$, massic heat capacities $c_{\rm p,s}$, V_{ϕ} , $C_{\rm p,\phi}$, and associated uncertainties are similar to methods in a recent report [16]. ### 3. Results and discussion Our experimental values of V_{ϕ} and $C_{p,\phi}$ for the mixture {18-crown-6 + Ba(NO₃)₂}(aq) are given in tables 1 and 2, respectively. Our results are also TABLE 1 Observed apparent molar volumes V_{ϕ} for aqueous {18-crown-6 + Ba(NO₃)₂} at $p = 0.35 \text{ MPa}^a$ | m^b | ${V_\phi}$ | ${V_\phi}$ | V_{ϕ} | $V_{oldsymbol{\phi}}$ | |--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | $\overline{(\text{mol} \cdot \text{kg}^{-1})}$ | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | $(\text{cm}^3 \cdot \text{mol}^{-1})$ | | | T = 278.15 K | T = 283.15 K | T = 288.15 K | T = 298.15 K | | 0.0208_4 | 281.6 ± 2.2 | 283.5 ± 2.3 | 284.7 ± 1.7 | 289.1 ± 1.4 | | 0.0305_0 | 277.6 ± 3.5 | 281.3 ± 2.6 | 284.1 ± 2.6 | 289.3 ± 3.4 | | 0.04187 | 278.2 ± 2.6 | 281.5 ± 2.0 | 284.2 ± 1.9 | 288.5 ± 2.5 | | 0.0495_4 | 281.4 ± 2.9 | 285.2 ± 2.4 | 287.6 ± 2.5 | 291.1 ± 3.0 | | 0.0590_4 | 277.5 ± 1.9 | 280.9 ± 1.5 | 283.8 ± 1.4 | 288.1 ± 1.8 | | 0.0792_{6} | 284.46 ± 0.69 | 285.53 ± 0.77 | 287.44 ± 0.71 | 291.25 ± 0.80 | | 0.1018 | 280.1 ± 1.2 | 282.8 ± 1.0 | 285.0 ± 1.0 | 288.91 ± 0.91 | | 0.1499 | 283.35 ± 0.74 | 286.03 ± 0.74 | 288.19 ± 0.76 | 291.64 ± 0.77 | | 0.250_{7} | 285.50 ± 0.68 | 287.79 ± 0.66 | 289.56 ± 0.68 | 292.71 ± 0.71 | | 0.3322 | 285.86 ± 0.67 | 288.29 ± 0.64 | 290.37 ± 0.67 | 293.32 ± 0.69 | | | T = 308.15 K | T = 318.15 K | T = 328.15 K | T = 338.15 K | | 0.0208_4 | 292.1 ± 1.5 | 294.4 ± 2.3 | 297.2 ± 3.3 | 298.4 ± 2.1 | | 0.0305_0 | 293.7 ± 4.7 | 297.0 ± 6.8 | 300.0 ± 4.9 | 301.3 ± 4.8 | | 0.0418_{7} | 292.7 ± 3.5 | 295.9 ± 5.0 | 299.1 ± 3.6 | 300.8 ± 3.5 | | 0.0495_4 | 294.6 ± 3.6 | 297.8 ± 4.7 | 300.9 ± 4.0 | 303.0 ± 3.9 | | 0.0590_4 | 292.0 ± 2.5 | 295.0 ± 3.6 | 297.5 ± 2.6 | 298.9 ± 2.5 | | 0.0792_{6} | 294.59 ± 0.95 | 297.85 ± 0.94 | 300.2 ± 1.3 | 302.4 ± 1.1 | | 0.1018 | 292.3 ± 1.1 | 294.8 ± 1.4 | 297.3 ± 1.2 | 299.5 ± 1.3 | | 0.149_9 | 294.77 ± 0.75 | 297.40 ± 0.72 | 300.10 ± 0.75 | 302.54 ± 0.78 | | 0.250_{7} | 295.50 ± 0.69 | 298.07 ± 0.70 | 300.44 ± 0.67 | 302.87 ± 0.68 | | 0.332 ₂ | 296.09 ± 0.68 | 298.82 ± 0.69 | 301.28 ± 0.66 | 303.65 ± 0.66 | | | T = 348.15 K | T = 358.15 K | T = 368.15 K | | | 0.0208_{4} | 299.2 ± 1.8 | 300.1 ± 1.5 | 302.38 ± 0.95 | | | 0.0305_0 | 303.6 ± 3.8 | 302.9 ± 2.9 | 301.8 ± 5.0 | | | 0.0418_{7} | 301.9 ± 2.8 | 303.0 ± 2.1 | 303.2 ± 3.7 | | | 0.0495_4 | 305.1 ± 3.7 | 307.5 ± 3.1 | 309.3 ± 3.4 | | | 0.0590_4 | 300.5 ± 2.0 | 301.5 ± 1.6 | 303.7 ± 2.6 | | | 0.0792_{6} | 304.3 ± 1.2 | 305.83 ± 0.97 | 307.30 ± 0.72 | | | 0.101_{8} | 301.1 ± 1.5 | 302.5 ± 1.3 | 303.7 ± 1.3 | | | 0.1499 | 304.80 ± 0.72 | 306.86 ± 0.71 | 309.12 ± 0.64 | | | 0.250_{7} | 305.07 ± 0.65 | 307.15 ± 0.64 | 309.23 ± 0.66 | | | 0.332_2 | 305.68 ± 0.63 | 307.51 ± 0.63 | 309.63 ± 0.64 | | The \pm values are from propagation of uncertainties as described in reference [16]. ^a Experimental values of ρ_s can be obtained by equation (8) with $m_t = m$, ρ_w from reference [17], and $M_{2,eq} = 525.6543$ g·mol⁻¹. ^b Molality of 18C6. Stoichiometric molality ratios $r = m(18\text{-crown-6})/m\{\text{Ba(NO}_3)_2\} = 0.998_4$ at $m \le 0.101_8$ mol·kg⁻¹ and $r = 0.994_2$ for $m \ge 0.149_9$ mol·kg⁻¹. # Download English Version: # https://daneshyari.com/en/article/9633526 Download Persian Version: https://daneshyari.com/article/9633526 <u>Daneshyari.com</u>