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Abstract

Using a field theoretical approach we study the effect of the charge fluctuations in an ionic solution for the simple case of planar

geometry and uncharged interface. To obtain the correction to the differential capacity beyond the Gouy–Chapman result we cal-

culate the charge–charge correlation function at the one loop approximation. We consider the capacity temperature dependence due

to this correction in relation to experimental and simulation results. At low temperatures we find an increase of the differential

capacity with temperature in contrast to the Gouy–Chapman formula predicting a monotonous decrease. We discuss a simple esti-

mation of the inversion temperature found to be in a fair agreement with simulation results.
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1. Introduction

The theoretical and experimental investigations on
charged interfaces are important for a better under-

standing of the phenomena related to the presence of

Coulomb interactions in many fields: electrochemistry,

colloid and membrane sciences as well as biological sys-

tems [1]. But even the simplest system, i.e., uncharged

planar interface with Debye–Hückel electrolyte is al-

ready complicated. As a consequence the simple physi-

cal description provided by the Gouy–Chapman
theory [2] is most frequently used by experimentalists.

This approach has a clear physical meaning. It is a

Mayer–McMillan level mean field theory based on the

Poisson–Boltzmann equations for point-like ions [3,4].

It plays the role of a theory of reference as it provides

exact results, for instance, on the differential capacity
for charged interfaces at vanishing electric charge and

at low ionic concentrations. Improvements of this ap-

proach are often based on mean field approximation

with some modifications to take into account the effect

of the solvent [5] or the phenomena specific to Coulomb

systems such as ion pairing [6]. The latter paper is an

extension to include the effects of ionic association in

the original mean spherical approximation theory for
the electric double layer [7]. Besides this and other inte-

gral equation theories [8,9] density functional theory

(DFT) based treatments of the electric double layer have

also been proposed, e.g., that of [10].

In a recent series of papers [11,12], we have developed

a field theoretical approach to study ionic solutions. The
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description is based on a simple Hamiltonian written in

terms of ionic distributions as the fluctuating fields. It

includes the coulombic energy and the ideal entropy

functionals. At the level of the quadratic approximation

this Hamiltonian yields the Debye–Hückel theory in the

bulk and in the mean field approach of charged inter-
faces gives the Gouy–Chapman theory. Alternatively,

we can obtain the Gouy–Chapman value for the differ-

ential capacity at an uncharged interface in a non-trivial

calculation using inhomogeneous charge–charge corre-

lation function at the quadratic level [13].

We have gone beyond the mean field treatment and

found that, in contrast to the Gouy–Chapman theory,

there exists a desorption density profile at the simple
uncharged interface as a result of the interfacial frus-

tration of charge fluctuations [13]. In this paper we

consider how this frustration affects the interfacial dif-

ferential capacity characterizing polarizable interfaces.

In our study we calculate the effect of fluctuations as

the one loop correction to the mean field theory. The

correction is opposite in sign to the leading term. Then

we consider it in relation to the widely discussed prob-
lem of so called anomalous temperature dependence of

the differential capacity found in experimental results

in molten salts [14–16] as well as in numerical simu-

lations [17] and not accounted for by the Gouy–

Chapman theory. These simulations showed for the

first time that the anomaly in the temperature coeffi-

cient of capacity was due to low effective temperature

of the molten salt. A later simulation shows that a
similar dependence at low temperatures characterizes

aqueous salts [18] and also the case with an explicit

solvent model [19].

Temperature dependence of the differential capacity

has received much attention in both theoretical and

experimental studies of the properties of charged inter-

faces as an important source of information on their

structuring [21]. It has been studied in various aqueous
and non-aqueous electrolytes mostly on mercury [22]

as well as polycrystalline and single crystal gold elec-

trodes ([23] and references therein). For dilute electro-

lyte and low charge densities we observe a negative

(Gouy–Chapman) temperature coefficient and for high

concentration or high charge densities the temperature

coefficient can be positive (anomalous).

The paper is organized as follows. In Section 2, we
present the system and its effective Hamiltonian. In or-

der to perform further calculations we put the quadratic

part of the Hamiltonian in the diagonal form for the

slab geometry. In Section 3, we describe the charge–

charge correlation function in the uncharged system at

a large wall separation. In Section 4, we calculate the

differential capacity. The first derivative of the grand

potential with respect to the external charge gives the
electric potential drop across the interface and the sub-

sequent derivation gives the inverse of the differential

capacity. In Section 5, the correction of the differential

capacity with respect to the standard Gouy–Chapman

result is analyzed in terms of its temperature depen-

dence. Finally in Section 6, we discuss our result in view

of existing experimental data and available theoretical

treatments.

2. Field theoretical description of the system

2.1. The Hamiltonian

We consider a 1–1 ionic solution bounded by two

hard walls at a distance L = L2 � L1 from one another
as shown in Fig. 1. The walls have a surface area A

and we consider the thermodynamic limit A! 1. The

distance L is finite but we consider the limit when it is

large in comparison with all other length scales in the

system, for instance the Debye length scale of the ionic

solution or the average distance between ions. The vol-

ume of the system is V = AL. The walls can be charged

with a surface charge density er. The dielectric constant
is uniform throughout the whole space and corresponds

to the dielectric constant of the pure solvent e. The sys-

tem is described in terms of the fields: q+(r) and q�(r)
representing densities of the cations and of the anions,

respectively. To focus on the electrostatic effects we

introduce an equivalent representation: q(r) = q+(r) �
q�(r) and s(r) = q+(r) + q�(r) in terms of charge density

and overall ionic density, respectively. The Hamiltonian
is a functional of the fields as given in [11,12,24]

bH½qðrÞ; sðrÞ� ¼ bHent½qðrÞ; sðrÞ� þ bHCoul½qðrÞ�; ð1Þ
where b = 1/kBT has the usual meaning of inverse tem-

perature. The first contribution is the ideal entropy

Fig. 1. Schematic representation of the model system. The electrolyte

is present in a slab between two walls charged with vanishingly small

charge density ±r and the dielectric constant e of pure solvent

characterizes all the space.
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