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Abstract

Simulations of H2 air lifted jet flames are presented, obtained in terms of two-dimensional, first-order
conditional moment closure (CMC). The unsteady CMC equation with detailed chemistry is solved with-
out the need for operator splitting, while the accompanying flow field is determined using commercial CFD
software employing a k � e turbulence model. Computed lift-off heights and Favre-averaged species mole
fractions are found to be very close to values obtained experimentally for a wide range of jet velocities and
fuel–air mixtures. Simulations for which the initial condition is an attached flame and the jet velocity grad-
ually increased do not result in lift-off, a result fully consistent with experimental observation and capturing
the hysteresis behaviour of lifted flames. The stabilisation mechanism is explored by quantifying the bal-
ance of terms comprising the CMC in the lift-off region. In line with experimental data, it is found that
the scalar dissipation rate at the stabilisation height is well below the extinction value, and that axial trans-
port and molecular diffusion play a major role. The radial components of spatial convection and diffusion
are always small, fully justifying the alternative approach of employing a cross-stream averaged CMC.
� 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Turbulent lifted jet flames involve a complex
balance between convection, diffusion, and chem-
istry, and hence present a considerable challenge
to combustion models. Many experimental and
numerical results have aimed to clarify the stabil-
isation mechanism of the lifted flame [1–3]. The
premixed flame propagation model by Vanquick-
enborne and van Tiggelen [4] assumes that there is
a fully premixed mixture before burning and that

the flame is stabilised at a position where the mean
flow velocity along the stoichiometric contour is
equal to the turbulent burning velocity. Peters
and Williams [5] argued that the amount of pre-
mixing at the molecular level is not sufficient
and proposed that flamelet extinction by excessive
strain rate occurred close to the nozzle. In another
approach, the strain rate in large-scale turbulent
structures caused extinction of the flame, and a
Damköhler number criterion was used to predict
lift-off height [6].

More detailed modelling, originally using non-
premixed flamelets only [7], and later including
partial premixing [8,9] and detailed chemistry,
showed an increasingly good agreement with
experimental data. Bradley et al. [10] used a
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mixedness–reactedness model and accurately
predicted lift-off heights of hydrocarbon flames,
while Ma et al. [11] extended the modelling to in-
clude radiation, which was found to be important.
Direct numerical and large eddy simulations sup-
port the concept that a triple flame exists at the
base of the lifted flame [12–14], consistent with
experimental data [15,16]. It is evident therefore
that significant advances have been made in our
capability to model lifted flames.

Recently, lifted turbulent flames have also been
examined by Devaud and Bray [17] with the con-
ditional moment closure (CMC) model. In this
work, the first-order CMC approach included
the spatial convection and diffusion terms, but
cross-stream averaging was performed following
[18], so that the conditional averages were pre-
dicted to depend only on the axial distance. A very
good agreement with experimental data was
found. In attached turbulent non-premixed jet
flames, the homogeneous version of CMC (i.e.,
without any spatial transport terms) has produced
very accurate results [19–21]. Two-dimensional
first-order CMC calculations have been per-
formed for autoignition problems [22–24] and
bluff-body flames [25]. Devaud et al. [26] devel-
oped a two-dimensional formulation for methane
flames, but no detailed analysis of the differences
between cross-stream averaged CMC and two-di-
mensional CMC was given. Second-order effects
are thought to be important for extinction and
ignition [27–30], and should, in principle, be in-
cluded for lifted flame stabilisation. Double-con-
ditioning could also be used, but has not been
tested yet for realistic problems [31], while a for-
mulation including premixed flames could also
be developed [32]. In practice, it is important to
examine the degree of success of the simpler and
computationally faster first-order conventional
CMC model, but with multi-dimensional spatial
transport.

In the present paper, we revisit the problems
simulated by Devaud and Bray [17]. Two-dimen-
sional CMC simulations of turbulent lifted jet
flames of hydrogen with a wide range of jet veloc-
ities and dilutions are performed to explore lift-off
height and to understand better the stabilisation
mechanism. In the next section, the model and
numerical methods are presented, which is fol-
lowed by a detailed discussion of the results. The
paper ends with a summary of the main
conclusions.

2. Model formulation and method of solution

2.1. CMC model

A conservation equation for the conditional
mean of a reactive scalar is given in [18,33,34]
and for the temperature (rather than enthalpy) in

[23]. The conditionally averaged mass fraction of
species a and the temperature T are defined as
Qa (g,x, t) = Æ Ya (x,t)|n (x, t) = gæ and QT (g,x, t) =
ÆYT(x,t)|n (x, t) = gæ, where n is the mixture frac-
tion, g is the sample space variable for the con-
served scalar, and Æ Æ |n = gæ denotes the ensemble
averaging subject to the condition that n = g; in
short Qa = ÆYa|gæ. The governing equation for the
conditional species mass fractions and tempera-
ture can be written as
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respectively. In Eq. (2), the Tcv and Td terms are
for spatial convection and diffusion, and Tm1

and Tm2
correspond to molecular diffusion (i.e.,

mixing in mixture fraction space). Pressure is as-
sumed constant, and hence the pressure work
term is neglected. The chemical source terms in
Eqs. (1) and (2) are closed at first-order, i.e.,

h _wajgi ¼ _wðQa;QT ; P Þ; h _wH jgi ¼ �
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with ha the absolute enthalpy. The conditionally
averaged specific heat capacity and density are
given by hCP jgi

PN
a¼1CP ;aQa and hqjgi ¼ ðPMÞ=

ðRQT ÞwithM themeanmolecularmass. The condi-
tional turbulent fluxes and conditional velocity are
important in the present 2-D formulation, as they
are expected to affect the stabilisation height where
the gradients of the conditional averages are strong.
Here, we used the conventionalmodelling from [18]
that gives:
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with the turbulent diffusivity defined as Dt = mt/
Sct, where mt and Sct denote, respectively, the
turbulent viscosity coming from the k � e model
and the turbulent Schmidt number taken as 0.7.
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