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Abstract

A novel method based on topology-preserving neural networks is used to implement vector quantization for medical image
compression. The described method is an innovative image compression procedure, which differentiates itself from known systems
in several ways. It can be applied to larger image blocks and represents better probability distribution estimation methods. A
transformation-based operation is applied as part of the encoder on the block-decomposed image. The quantization process is
performed by a “neural-gas” network which applied to vector quantization converges quickly to low distortion errors and reaches a
distortion error lower than that resulting from Kohonen’s feature map or the LBG algorithm. To study the efficiency of our
algorithm, we blended mathematical phantom features into clinically proved cancer free mammograms. The influence of the neural
compression method on the phantom features and the mammo-graphic image is not visually perceptible up to a high compression

rate.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The importance of coding and compression in
transmission and storage is well established. The goal
of image compression is to reduce the data amount and
to obtain a low bit rate digital representation without
affecting the perceptual image quality.

A compression system typically consists of a signal
decomposition such as Fourier or wavelet, a quantiza-
tion operation on the coefficients, and finally lossless or
entropy coding such as Huffman or arithmetic coding.
Decompression reverses the above process; although if
quantization is used, the system will be lossy in the sense
that the image will not be perfectly reconstructible from
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the digital representation. Quantization is only approxi-
mately reversible.

Transformed-based techniques have been proposed
for the efficient reduction of the high redundancy
usually encountered in real life images (Netravali and
Haskell, 1988; Tzovaras and Strintzis, 1998; Strintzis,
1998). Unsupervised neural networks can perform
nonlinear principal component analysis as a trans-
form-based method in image compression (Oja et al.,
1991; Tzovaras and Strintzis, 1998). They outperform
linear principal component analysis, and are relatively
easy to implement.

Another common method to compress images is to
code them through vector quantization (VQ) techniques
(Gray, 1984). Self-organized Kohonen maps have been
used to achieve the VQ process of image compression
(Amerijckx et al., 1998). They represent an efficient
compression scheme based on the fact that consecutive
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blocks in an image are often similar, and thus coded by
similar codewords with a VQ algorithm.

Early studies of lossy compressed medical images
performed compression using variations on the standard
discrete cosine transform (DCT) coding algorithm
combined with scalar quantization and lossless coding.

More recent studies of efficient lossy image compres-
sion algorithms have used subband or wavelet decom-
positions combined with scalar or vector quantization
(Woods, 1991; Said and Pearlman, 1996; Pal et al.,
2000). These algorithms provide several potential
advantages over traditional Fourier-type decomposi-
tions, including better concentration of energy, better
decorrelation for a wider class of signals. The wavelet-
based approach, however, has a filter whose length
varies as a function of resolution. As a result, the errors
they introduce are not well-localized and can appear as
ringing distortion. In Betts et al. (1998) and Perlmutter
et al. (1997) was used a compression algorithm
(Shapiro’s embedded zerotree algorithm (Shapiro,
1993)) of the subband/pyramid/wavelet coding class.
New forms of multiresolution vector quantization
algorithms were investigated in Cosman et al. (1996)
and Li et al. (1996). The vector generalizations of the
embedded zero-tree wavelet technique used in Cosman
et al. (1996) incurred additional complexity and made
this approach inferior to the scalar wavelet coding
selected. The non-wavelet multiresolution technique
used in Li et al. (1996) provided significant improve-
ments at modest complexity cost for low resolution
images, e.g., for medical images reduced in size for
progressive viewing during the rendering of the full
image.

The goal of this paper is to present and evaluate a new
lossy neural-based compression method for medical
images. The proposed cascaded technique combines a
transformation-based neural network with a VQ-neural
network, the “neural gas” network.

The described method is an innovative medical image
compression procedure, which differentiates itself from
known systems in several ways. Existing medical image
compression methods are mostly vector generalizations
of the embedded zero-tree wavelet technique (Shapiro,
1993; Said and Pearlman, 1996). They perform poorly in
comparison to sophisticated pattern recognition tech-
niques and involve only operations on small 2 x 2 pixel
blocks. The proposed neural-based approach is ex-
tended to larger blocks and represents a better prob-
ability distribution estimation method.

2. The global compression scheme
Transform-based algorithms for lossy compression

transform an image to concentrate signal energy into a
few coefficients, quantize the coefficients, and then

entropy code them after assigning special symbols for
runs of zeros.

The linear principal component analysis realized by
the Karhunen-Loeve transform (KLT) is the optimal
linear transform for energy compaction into a few
coefficients. A linear principal component analysis
(PCA) can be easily implemented by a class of
autoassociative neural networks (Haykin, 1994; Oja,
1982).

The proposed method combines a PCA-type neural
network, based on Hebbian learning, with a proposed
data compressor (“neural-gas” network) performing
vector quantization. Applied to vector quantization,
the ‘“‘neural-gas” network converges quickly to low
distortion errors and reaches a distortion error lower
than that resulting from Kohonen’s feature map or the
LBG (Linde, Buzo, Gray) algorithm (Linde et al., 1980).

The PCA transform is applied to image blocks which
are treated like data vectors and performs a projection
of the data vector on a lower dimensional space.

A single layer neural network with L input neurons
and M linear output neurons where M < L is performing
the PCA analysis based on three different algorithm.
The output of the network y is defined by y = WTx. x is
the input vector and W is the weight matrix of the
network.

Depending on the type of the activation function
(linear or nonlinear) we implemented three different
PCA algorithms known as Generalized Hebbian Algo-
rithm (GHA) (Sanger, 1989), Oja’s symmetric algorithm
(OJA) (Oja, 1989) and nonlinear PCA (NLPCA)
(Karhunen and Jourtensalo, 1994).

Oja’s symmetric algorithm will provide the conver-
gence of the weight matrix to a subspace spanned by the
most significant eigenvectors of the input data covar-
iance matrix. The outputs of the network will then be
decorrelated and their variance maximized, so the
information content of the L-dimensional vectors will
be maximally transferred by the M-dimensional output
vectors in the mean square sense.

The weight adaptation equations for the feedforward
weight matrix W for OJA’s and NLPCA algorithm are
given below

OJA:Wn+1)
= W(n) + [l = W)W (m)]x(n)x" (n)W(n), (1

NLPCA :Wn+1)
= W) + n[x(mg(x" ()W () 2)

—~W(m)g(W (m)x(m)g(x" (m)W(m))], (€)

where p is the learning rate, x is the input vector and ¢ is
usually a monotone odd nonlinear function. Here
the function ¢(7) is applied separately to each compo-
nent of its argument vector. The advantage of using
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