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a b s t r a c t

We develop a nonsmooth approach to envelope theorems applicable to a broad class of parameter-
ized constrained nonlinear optimization problems that arise typically in economic applications with
nonconvexities and/or nonsmooth objectives. Our methods emphasize the role of the Strict Mangasar-
ian–Fromovitz Constraint Qualification (SMFCQ), and include envelope theorems for both the convex and
nonconvex case, allow for noninterior solutions as well as equality and inequality constraints. We give
new sufficient conditions for the value function to be directionally differentiable, as well as continuously
differentiable. We apply our results to stochastic growth models with Markov shocks and constrained
lattice programming problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the work of Viner (1931) and Samuelson (1947), the en-
velope theorem has become a standard tool in economic analysis.
In its ‘‘classical’’ form an envelope theorem is simply a continuous
derivative of the value function in a parameter. Sufficient condi-
tions for its existence at first required a great deal of mathematical
structure, including convexity, interiority, as well as the continu-
ous differentiability (‘‘smoothness’’) of objectives and constraints
(e.g., Samuelson, 1947, Rockafellar, 1970,Mirman and Zilcha, 1975,
Benveniste and Scheinkman, 1979).

In subsequent work, some of these assumptions were loosened.
For instance, versions of Danskin’s Theorem in Clarke (1975) and
Milgrom and Segal (2002) relax conditions on the structure of
the choice set in unconstrained problems, with Clausen and Strub
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(2013) further extending these results to problems with interior
solutions and integer decisions in very general dynamic settings.

Recently, and more along the lines of this paper, Rincon-
Zapatero and Santos (2009) have extended the classical C1 en-
velope theorem to infinite horizon stochastic dynamic programs
with inequality constraints in the presence of noninterior solu-
tions. These findings (as well as Milgrom and Segal’s results for
the cases with inequality constraints), however, only concern con-
vex programs and it is not clear how they can be extended to
economic models with nonconvexities and/or non-differentiable
objectives. At the same time, the optimization literature has made
a lot of progress on stability bounds for nonconvex non-smooth
programs (see, for instance, the monographs of Clarke, 1983 and
Bonnans and Shapiro, 2000), although the focus has generally not
been on simple and practical sufficient conditions for exact direc-
tional derivatives.

In this paper we combine recent results from the optimiza-
tion literature with sets of conditions easily verifiable in finite
dimensional problems sufficient for the existence of generalized
envelope theorems applicable to many economic models with
nonconvexities or non-smooth objectives. When seeking envelope
theorems for such programs, several important issues arise. First,
since classical envelope theorems cannot be expected, one would
like to propose an alternative notion of a ‘‘generalized’’ envelope
that fits most applications and is a ‘‘substitute’’ for the classical en-
velope. Second, the proposed approachmust work in settings with

http://dx.doi.org/10.1016/j.jmateco.2015.09.001
0304-4068/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jmateco.2015.09.001
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2015.09.001&domain=pdf
mailto:suchismita.tarafdar@snu.edu.in
http://dx.doi.org/10.1016/j.jmateco.2015.09.001


158 O. Morand et al. / Journal of Mathematical Economics 61 (2015) 157–165

both equality and inequality constraints, and when optimal solu-
tions are not necessarily interior. Third, when Slater’s condition is
not appropriate, new constraint qualifications allowing for simple
(and, if possible, exact) calculations of a generalized envelope or
for the existence of differential bounds for the value function (the
latter is often all that is needed in applications) need to be identi-
fied.

Methodologically, we take a ‘‘nonsmooth’’ approach closely re-
lated to the work of Gauvin and Tolle (1977), Gauvin and Dubeau
(1982) and Auslender (1979), and consider Lipschitz programs in
finite dimensional spaces, in which objective functions are only as-
sumed to be locally Lipschitz, thus not necessarily differentiable,
and the constraints are continuously differentiable.1 We showhow
progressively stronger conditions on primitive data lead to pro-
gressively sharper characterizations of the differentiable proper-
ties of the value function. Specifically, we give conditions under
which value functions admit differential bounds, are Clarke differ-
entiable, directionality differentiable, and continuously differen-
tiable. Our sharpest results focus on constraint systems satisfying
the Strict Mangasarian–Fromovitz Constraint Qualification, a re-
finement of the Mangasarian–Fromovitz Constraint Qualification
equivalent to the uniqueness of the Karush–Kuhn–Tucker multi-
plier in our setup.

The remainder of the paper is laid out as follows. In Section 2,
we describe the benchmark class of optimization programs we
consider. In Section 3 we present our main results. In particular,
we provide results on differential bounds for the value function,
directional differentiability, and C1 differentiability. Applications
of some of these results make up the last section of the paper,
and the Appendix briefly exposes somemathematical tools of non-
smooth analysis and some lattice programming notions.

2. Lipschitz programs

Given a space A of actions (or controls), a parameter space S, and
an objective function f : A × S → R, we consider the following
parameterized Lipschitz program:

V (s) = max
a∈D(s)

f (a, s) (2.0.1)

where the feasible correspondence is given by:

D(s) = {a|g i(a, s) ≤ 0, i = 1, . . . , p, hj(a, s) = 0, j = 1, . . . , q}

and the optimal solution correspondence is defined as:

A∗(s) = arg max
a∈D(s)

f (a, s).

We will maintain some baseline assumptions throughout the
paper:

Assumption 1. (a) A and S are open convex subsets of Rn and Rm,
respectively;

(b) the objective function f : A × S → R is locally Lipschitz in
(a, s),

(c) the constraints g i, i = 1, . . . , p and hj, j = 1, . . . , q are jointly
C1, and n ≥ q.

We use a standard Lagrangian duality scheme applied in a
nonconvex context. Of course, the cost of relaxing convexity is
immediate aswe generally lose strong duality and the construction
of a necessary and sufficient first order theory for optimal
solutions generically becomes impossible. Nevertheless, this does
not prevent us from providing mild conditions under which sharp

1 Problemswith nonsmooth constraints aswell as ‘‘mixed-integer programming’’
problems are studied in Morand et al. (2013).

characterizations of simple nonsmooth envelope theorems for
program (2.0.1) can be read from linearizations of the Lagrangian
dual at its optimum.

Letting the vector of dual variables be denoted by (λ, µ) ∈

Rp
+ × Rq, we conjugate program (2.0.1) with a classical Lagrangian

duality scheme as follows2:

L(a, λ, µ; s)

=

f (a, s) − λg(a, s) − µh(a, s) if a ∈ A, (λ, µ) ∈ Rp
+ × Rq

−∞, if a ∉ A, (λ, µ) ∈ Rp
+ × Rq

∞, otherwise

where:

g(a, s) = [g1(a, s), . . . , gp(a, s)];
h(a, s) = [h1(a, s), . . . , hq(a, s)].

A point a ∈ D(s) is a Karush–Kuhn–Tucker (KKT) point if there exists
(λ, µ) ∈ Rp

+ × Rq such that:

0 ∈ ∂af (a, s) − (λ∇ag + µ∇ah) (a, s)

and:

λg(a, s) = 0.

Wedenote by K(a, s) the set of ‘‘KKTmultipliers’’ (λ, µ) associated
with the KKT point a.

In constrained optimization, constraint qualifications are
needed to guarantee that optimal solutions areKKTpoints, and that
the feasible region around such points does not vanish under local
perturbations of the parameters. The strongest of these constraints
is the Linear Independence Constraint Qualification (LICQ), central
to the work of Gauvin and Dubeau (1982) and the focus of Rincon-
Zapatero and Santos (2009), for example.

Definition 1. A feasible point a ∈ D(s) satisfies the LICQ if the
following vectors are linearly independent,

∇ag i(a, s), i ∈ I, ∇ahj(a, s), j = 1, . . . , q

where I = {i : g i(a, s) = 0}.

The LICQ is rather strong and plays no role in our argument.
Rather, we focus a weaker constraint, the Mangasarian–Fromovitz
Constraint Qualification (MFCQ), which is equivalent to Robinson’s
constraint qualification in finite dimensional spaces (and with a
finite number of constraints).

Definition 2. A feasible point a ∈ D(s) satisfies the MFCQ if:

(i) the following vectors are linearly independent,

∇ahj(a, s), j = 1, . . . , q

(ii) there exists y ∈ Rn such that,

∇ag i(a, s)y < 0, i ∈ I; ∇ahj(a, s)y = 0, j = 1, . . . , q

where the set of active constraints are denoted by I = {i :

g i(a, s) = 0}.

Because the MFCQ is not sufficient to guarantee the unique-
ness of the KKT multipliers, it is very difficult to obtain direc-
tional derivatives and sharp characterizations of the generalized
gradient. However, the MFCQ is sufficient for asserting the non-
emptiness of the set of multipliers (as well as their compactness;
e.g., Gauvin and Tolle, 1977, Corollary 2.8), as stated in the follow-
ing proposition.

2 If A is closed, then the abstract constraint a ∈ A induces an additional term in
the Lagrangian (see, for instance, Clarke, 1983, Chapter 6).
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