
Slack bus treatment in load flow solutions with uncertain nodal powers

Aleksandar Dimitrovski *, Kevin Tomsovic

School of EECS, Washington State University, Pullman, WA 99164, USA

Abstract

This paper addresses the problem introduced by the slack bus in load flow solutions with uncertain nodal powers. While balancing powers in the

system the slack bus will also absorb all uncertainty. The results obtained are of no practical interest unless realistic constraints are imposed on

slack power production/consumption. Two methods of dealing with these constraints are investigated suitable for implementation within the

recently developed boundary load flow.
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1. Introduction

The most common formulation of the load flow problem

requires all input variables (PQ at loads, PV at generators) to be

specified as deterministic (‘crisp’) values. Each set of specified

values corresponds to one system state, which is deemed

representative for some set of system conditions. Thus, when the

input conditions are uncertain, as is predominantly the case in

planning, there is a need for numerous scenarios to be analyzed.

A load flow approach that could directly incorporate uncertainty

into the solution process has been long recognized as useful. The

results from such analysis would be expected to give solutions

over the range of the uncertainties, i.e. solutions that are sets of

values or regions instead of single operating points.

To date, two families of uncertain load flow algorithms have

evolved. The first one is the probabilistic load flow (PLF),

which considers loads and generations as random variables

with some probability distributions (e.g. [1–4]). The results of

the load flow, i.e. voltages, power flows, and so on, are also

random variables with resultant probability distributions

obtained using probabilistic techniques. The second is the

fuzzy load flow family of algorithms, where input variables are

represented as fuzzy numbers (e. g. [5–7]). Fuzzy numbers are

described by possibility distributions and can be considered to

be intervals with indistinct boundaries. The results obtained are

also fuzzy numbers with resultant possibility distributions.

The authors have recently extended these concepts to the so-

called boundary load flow [8,9].

Both families of uncertain load flow algorithms use the same

definition of the problem as the traditional deterministic

approach. That is, load buses are defined as PQ buses, generator

buses as PV buses, and one bus is assumed to be a slack bus to

balance the active and reactive power in the system. The ‘slack’

bus (or ‘swing’ bus) is defined as Vq bus. While this definition of

the load flow problem is appropriate for a deterministic solution

(although it may still be helpful to define a distributed ‘slack’

among several buses), it has an inherent drawback when dealing

with uncertain input variables: the slack bus must absorb all

uncertainties arising from the solution and thus, will have the

widest nodal power possibility (probability) distributions in the

system. If even moderate amounts of uncertainty are allowed in

a large system, the resulting distributions will frequently contain

values well beyond the generating margins of the slack

generator.

This problem has been neglected so far in the literature

except for the case of a linearized fuzzy DC load flow [7]. In that

work, three approaches, conceptually the same, use an iterative

corrective procedure in order to satisfy constraints imposed on

the slack bus. Recently, the authors have developed a methodo-

logy that enables an accurate solution from a non-linear AC

fuzzy load flow [8]. It follows the concept of boundary load flow

(BLF) solutions, where solutions are based on an optimization

procedure for implicitly defined vector functions. Numerical

results obtained from test systems have shown the feasibility of

this approach, but they also have shown the problems associated

with the inappropriate definition of the slack bus.

This paper extends the previous work and investigates

different ways of incorporating the constraints imposed on the
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slack bus in the framework of boundary load flow solutions.

Two methods of dealing with this problem are considered: (1)

slack bus to PV bus and PV bus to slack bus conversion, and (2)

distributed slack bus modeling. The results obtained from

different test systems as well as the specifics in different

approaches are discussed and compared.

2. Boundary load flow solutions

The BLF was presented for the first time in [2] within the

context of PLF. In that paper, an approximate solution for the

ranges of values for state and output variables, given the ranges

of values of input variables from their probability distributions,

was found. The ranges of variables were then used to determine

multiple points of linearization for the load flow equations in

order to improve the accuracy of the PLF solutions, particularly

for the tail regions of the probability distributions.

The authors have developed a methodology, where an

accurate solution for a non-statistical interval load flow is

obtainable [8]. In the following, a brief explanation of this

methodology is given.

The load flow problem is defined by two sets of nonlinear

equations:

Y Z gðXÞ (1)

and

Z Z hðXÞ; (2)

where:

X is the vector of unknown state variables (voltage

magnitudes and angles at PQ buses; and voltage angles

and reactive power outputs at PV buses),

Y is the vector of predefined input variables (real and

reactive injected nodal powers at PQ buses; and voltage

magnitudes and real power outputs at PV buses),

Z is the vector of unknown output variables (real and

reactive power flows in the network elements), and

g, h are the load flow vector functions.

The boundary values are the extreme points found by allow-

ing the inputs to vary over their range. In our notation, we want to

find the extreme values for the elements of X and Z implicitly

expressed in (1) and (2), in terms of the elements of Y which, in

turn, are constrained. Thus, finding the boundary values in a load

flow problem is a process of locating the constrained extrema of

implicitly defined vector functions of vector arguments.

Because X cannot be explicitly expressed in terms of Y, the

solution of the system of equations (1) is found by an iterative

process. Given an initial trial solution, X 0, the error is

calculated as:

DY Z YKY0 Z YKgðX0Þ: (3)

If a Newton–Raphson (N–R) based scheme is used, (1) is

linearized around X 0 and an update for the new solution is

found as:

DX Z K$DY; (4)

where K is the inverse of the Jacobian of g evaluated at X 0. The

element Kij of this matrix is the partial derivative of Xi with

respect to Yj. Similarly, if we linearize (2) and substitute for DX

from (4) we will obtain:

DZ Z S$DX Z L$DY; (5)

where S is the Jacobian of h at the given point of linearization.

The matrix LZS$K is a sensitivity coefficient matrix and the

element Lij is the partial derivative of Zi with respect to Yj.

Each row of K and L represents the gradient vector of the

corresponding state and output variable Xi and Zi, respectively.

Similar to derivative based optimization procedures, by

iteratively following the direction of the gradient, extreme

points (possibly local) of the state or output variable can be

found.

Only the signs of the partial derivatives that comprise the

gradient are used in the solution since our experience has

shown that the values of the partials are not useful for

efficiently determining the updates. Further, a procedure is

needed to maintain feasibility of the solution, i.e. ensure the

input variables remain within the constraints for all iterations.

The iterative procedure is reviewed in the following.

Suppose that the minimum value of Xi is sought. If Kij is

positive (negative), then decrease (increase) the value of Yj by

some fixed step size. After repeating for all Yj we obtain a new

point of Y from which a new X from (1) can be found. From

this new point, the above steps are repeated until one of the

following is true for all input variables:

† the partial derivative is positive and the associated variable

is at a minimum;

† the partial derivative is negative and the associated variable

is at a maximum;

† the partial derivative is zero.

If the final condition does not hold for any variable, then the

solution is clearly a local constrained extremum. Because of

the nonlinearity of (1) and (2), this point may not be the only

extrema. In practice, we have found the physical nature of the

load flow problem leads to either a unique solution or a

relatively small number of extrema.

When one or more of the partial derivates are zero, the

solution point lies somewhere on the boundary surface. Such a

point is either a local constrained extremum or a saddle point.

Though it is unlikely that by preceding in a downhill direction

one will end up trapped in a local maximum or a saddle point,

theoretically such a possibility exists. Here, previous values of

Xi are recorded at each step and if Xi fails to decrease, then the

step length is modified.

Finally, in the special case when all the partial derivatives

are zero, a solution cannot be obtained due to the singularity of

the Jacobian. Such a point typically indicates infeasibility of

the load flow and a loading limit for the system considered. A

singularity of the Jacobian may also occur even if not all of

the partial derivatives are zero. In such cases, the ranges of

values of the input variables are too great and one must repeat

the calculations with reduced variations for some or all of the
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