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Abstract

A single-period auction game model for analyzing strategic behavior in pool-based electricity markets is introduced in the paper. We study

the Nash equilibrium in a pure strategy sense of such games. First an equilibrium existence lemma is proved. Equilibrium characterization

under tight capacity constraints is provided. Then it is demonstrated that an auction game does not possess a pure strategy Nash equilibrium

under a wide range of market conditions. The paper provides a characterization of equilibrium under weak capacity constraints. We apply the

introduced results to analyze market power indices presented in our earlier work and in related reports. Applications to actual market

analysis, as well as limitations of the introduced model are provided.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Power system; Electricity market; Game theory; Optimization

1. Introduction

Electricity markets are emerging in many parts of the

world. The real world market models lie between two

extremes—the bilateral model and the pool-based model

[1,2]. The micro-features of both bilateral and pool models

are being continuously enhanced, debated, and studied [3].

A concern of increasing interest is the development of

analytical tools for studying electricity markets [29].

Several approaches are reported in the literature: empirical,

experimental [4–6], general competitive market [7,8], and a

game-theoretic approach.

This paper focuses on the development of a game-

theoretic model. Of particular interest is a characterization

of the pure strategy game equilibrium. We study a market

auction game for a basic trading period (say, an hour). The

unit commitment issue is not considered.

A number of game-theoretic models have been suggested

in the literature. The classic Cournot models [9,10],

Bertrand models [11], and the recent supply function

equilibrium models [12,13], are only a few examples.

More examples can be found in [14–18] and references cited

therein. A related problem is the optimal bidding issue in

electricity markets [19,20].

In a pool-based electricity market, a supplier aims to

maximize its profit, but the independent system operator (ISO)

always selects least expensive generators to supply power.

Therefore a power supplier faces a bi-level optimization

problem [21]. This important characteristic of an auction game

is recognized in several recent works [22–24].

The game model suggested in this paper follows the

aforementioned concept. In contrast to existing models, bid

prices, instead of generation output, are assumed to be the

strategic variable in the proposed model. We take a case-by-

case-study approach, as is often the situation in game-

theoretic studies. We also adopt a zonal transmission model,

which is widely used by utilities, including NEPOOL

[25,26]. We are able to obtain certain analytical, versus

computational, results. Notably, we characterized the

equilibria of the game under tight and weak capacity

constraints. We introduce the concept of quasi-equilibrium

for the study of market performance under some market

conditions. In a companion paper we present equilibrium

analysis results which are based on the assumption that all

generators in the market under study have identical cost

structures [33]. This assumption is not needed in the results

presented here.
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The related work, to the best of our knowledge, is

presented in reference [11]. Our results distinguish those of

[11] in several aspects. First, we provide equilibrium

analysis results which are computable, not just of

‘existence’ nature as those in [11]. Second, we explicitly

model the impact of capacity constraints on market behavior

and present market power indices that can be conveniently

used in applications.

2. Electricity auction game

Like most of the game models reported in the literature,

the proposed model is intended for a single-period auction

game. Unit commitment is not considered in this paper. In

this section we will first describe the auction and pricing

structure, then define the auction game.

2.1. The single-period auction in electricity markets

Let s be the bid prices of generators and P be the

power dispatch vector. The power dispatch and pricing

solution is then obtained from the following optimization

problem [1]:

Min
P

sT ,P (1.1)

S:T: eTðP KLÞ Z 0; TðP KLÞ% �F; 0%P% �P

(1.2)

where �P is the high operating limit vector, e is a vector

with all ones, and L is the load vector. The vector �F
contains certain transmission limits. Eq. (1.2) describe the

feasible set of the dispatch problem. The above power

dispatch and pricing model is assumed to be loss-less.

In Eq. (1.2), matrix T contains the configuration data of a

transmission network that is represented by a zonal model

[3]. Each zone is subject to an import limit. For example,

suppose there are three generators in a zone, the zonal

import constraint is represented as follows:

KP1 KP2 KP3 CL% �F

The variations of this zonal model, which can accommodate

common transmission constraints [25,26], are being

followed in several real world markets (e.g., Australia,

Nordic Pool). Zones do not intersect with each other but can

be nested, therefore T has a simple structure. For example, a

small zone consists of generator A, B, and C. This small

zone can be included in a larger zone, which consists of

generator A, B, C, and D. The information of flows between

two zones is not explicit in the model. In many markets

where metering is insufficient to support nodal pricing (e.g.,

New York and New England), using the above zonal trans-

mission model is the only choice for settlement purposes.

The elements of the matrix are equal to 0, 1 or K1.

The Lagrangian function of the above optimization

problem is as follows:

G Z sT ,P CleT ðP KLÞCgT ½TðP KLÞK �F�

CaT ðP K �PÞKbT P (2)

where the bold Greek characters l, g, a, and b represent

Lagrangian multipliers. These Lagrangian multipliers and

the dispatch P must satisfy the so-called Kuhn-Tucker

optimality conditions.

Exactly four alternatives of the auction problem (1) can

be seen. They are: (i) the problem is unbounded; (ii) the

problem is infeasible; (iii) the problem has a unique optimal

solution; and, (iv) the problem has multiple optimal

solutions. Under very weak conditions, we will show that

the first two alternatives can be excluded from consideration

throughout this paper. We are then left with the third and

fourth alternatives.

When the auction problem (1) has a unique optimal

solution, the spot price of electricity in a zone is equal to the

marginal cost of supplying one unit of electricity to that

zone. Following the Envelope Theorem [7], the spot prices

in zones are computed by differentiating with respect to load

as follows:

r Z
vG

vL
ZKle KgTT (3)

If the problem (1) has multiple optimal solutions, it implies

that the bid prices of some units are the same and these

generators set clearing price. Under such circumstances,

these generators are dispatched in proportion to their bid-in

quantities. This widely accepted method is important in this

paper, and therefore is presented mathematically (for

illustration, in the following equation we assume that the

bid prices of two generators are the same):

P1 Z
�P1

�P1 C �P2

L̂; P2 Z
�P2

�P1 C �P2

L̂ (4)

where L̂ is the residual load that the two generators supply

(see Fig. 1).

Price

L̂
CP

Load
Quantity

Fig. 1. Residual load when two generators bid the same price (CP: Clearing

Price; L̂: residual load as defined in the figure). For interpretation of the

references to colour in this figure legend, the reader is referred to the web

version of this article.
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