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Abstract

Application of wavelet networks for the identification of a synchronous generator is described in this paper. Parameter adaptation laws are

used to track the variations in the parameters, following changes in the generator operating conditions. The adaptation laws have been

developed using a Lyapunov function. This guarantees the stability of the identification algorithm and also ensures the convergence of

parameters and variables. The proposed method has been tested on a synchronous machine. Experimental results show good accuracy of the

identified model and robustness of the algorithm following severe changes in the operating conditions.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increased complexity of the modern inter-

connected power systems, analysis of the dynamic per-

formance of such systems has become very important. For

the analysis of the dynamic performance and stability of the

system, a valid dynamic model is a basic requirement. For

this reason, identification and modeling of different parts of

the power systems, has attracted many researchers.

Synchronous generators play a very important role in the

stability of the power systems. A valid model for

synchronous generators is essential for a valid analysis of

stability and dynamic performance. Almost three quarters of

a century after the first publications in this area [1,2], the

subject is still a challenging and attractive research topic.

The traditional methods of modeling of synchronous

generators are well specified in IEEE standards [3]. These

methods assume a known structure for the synchronous

machine, using well-established theories like Park

transformation. They address the problem of finding

the parameters of the known structure. Usually, the

procedures involve difficult and time-consuming tests.

These approaches include short-circuit tests, standstill

frequency response (SSFR) and open circuit frequency

response (OCFR). These tests can mainly be carried out

when the machine is not in service.

To overcome the shortcomings of the traditional

methods, identification methods based on on-line measure-

ments have gained attention during the recent years [4–8].

These methods can be divided into two categories. In

the first category [4–6], assuming a known structure for the

synchronous machine (as the traditional methods), the

physical parameters are estimated from on-line measure-

ments. The second category [7,8] deals with black-box

modeling of synchronous generators using input–output

data. In the black-box modeling, the structure of the model

is not assumed to be known a priori. The only concern is to

map the input data set to the output data set.

Identification of linear dynamic systems has theoretically

been well established and many good approaches are

available [9,10]. However, identification of nonlinear

systems such as synchronous machines, is still an active

research topic. Many different approaches, like Nonlinear

Least Squares, Volterra series, Weiner series, Wavelets,
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Neural networks, Fuzzy logic and Genetic algorithm have

been developed for identification of nonlinear systems.

A survey of techniques prior to the 1980s is given in [11].

A good recent review of the nonlinear identification

approaches can be found in [12].

Among many methods developed for black-box

modeling are neural networks [13] and the recently

introduced wavelet decomposition [14–16]. These tools

have become useful in many scientific areas, among

which are signal processing and system identification.

Although the approaches are based on different theoretical

basis, there are some similarities when the final optimiz-

ation index is obtained. Therefore, efforts have been made

to find some common ground for the mentioned methods.

Wavelet networks, which have been developed using both

the feed-forward neural networks and wavelet decompo-

sitions, combine the advantages of both approaches [17–

19]. The main idea is to use wavelet functions and scaling

functions as the nonlinear functions required in the

neurons.

In this paper, the aim is to identify a nonlinear black-box

model for a synchronous generator using wavelet networks.

Such black-box models can be used for system analysis and

controller design, especially designing power system

stabilizer (PSS). The model can be used either in a

predictive control structure for an on-line PSS design, or

used as a simulator to test an off-line design. The paper is

organized as follows.

In Section 2, the identification method is described. In

this section, first the wavelet decomposition and then the

adaptation laws for parameter estimation are introduced.

Section 3 describes the model of the system. Experimental

setup and data collection on a micro-machibe are discussed

in Section 4. In Section 5, the application of the proposed

method is carried out on the micro-machine and the

experimental data is compared with the simulated nonlinear

model of the synchronous generator. Section 6 concludes

the paper.

2. Identification method

A detailed description of the theory of the wavelet

transform can be lengthy and complicated. A brief

description of the identification of nonlinear systems using

wavelet networks is described here. For a detailed treatment

of the subject one may refer to [14,19].

To use wavelet transform, a wavelet function should be

defined. A wavelet function, j(x), is a function whose

binary dilation and dyadic translations are enough to

represent all functions in L2ðRÞ. In other words, if a

function f(x) is measurable andðCN

KN
jf ðxÞj2dx!N (1)

then it can be represented by the series

f ðxÞ Z
X

j;k
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where

jj;kðxÞ Z 2j=2jð2jx KkÞ (3)

If f(x) is known, the wavelet coefficients cj,k are given by

cj;k Z hf ;jj;kðxÞi Z
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where jj;kðxÞ is complex conjugate of jj,k(x).

Using multiresolution analysis (MRA) [14] of the

wavelet transform, for some integer value j0 (usually

zero), Eq. (2) can be replaced by

f ðxÞ Z
X

k

aj0k4j0kðxÞC
X
jRj0

X
k

bj;kjj;kðxÞ (5)

where 4(x) is called the scaling function and

4j0kðxÞZ2j0=24ð2j0xKkÞ. The scaling function and the

wavelet function are related to each other and one can be

obtained using the other [14]. For n-dimensional case,

Eq. (5) is replaced by
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where
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and also Jið
�
xÞ; iZ1; 2;.; ð2nK1Þ are obtained by sub-

stituting some 4(xj) by j(xj) in Eq. (7). In practical use of

Eq. (6), some limited number of j and k is quite adequate.

Therefore, Eq. (6) becomes:
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Using MRA, it can be shown that the bigger N and wider

range of k would result in a better approximation of the

function [14,19]. Eq. (8) is called the wavelet network as it

takes the form of a neural network and the wavelet functions

are used in its formulation.

Now consider a continuous dynamic nonlinear system

described by

_
�
x Z

�
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where
�
x2Rn is the state vector and

�
u2Rr is the input

vector and
�
fð
�
x;

�
uÞZ ½f1ð �

x;
�
uÞ; f2ð �

x;
�
uÞ;.; fnð �

x;
�
uÞ�T is a non-

linear function vector. Eq. (6), which was written for a

scalar function can now be extended to the vector function

�
fð
�
x;

�
uÞ. Note that the number of variables has changed

from n to mZnCr in the state space description of
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