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Abstract

Until recently the concept of an integrated framework for coordinating operational tasks in industrial plants has not been possible due to

technological limitations. Integration of functions within an intelligent system architecture would result in improved plant performance,

safety and an increase in production. As a result of increased computing power and powerful memory systems, a fully computer integrated

system is now possible, however, achieving an integrated framework for operational tasks is quite complex. Problems of task integration

include not only the consideration of information flow and timing for a continuously changing environment, but the integration of various

problem-solving methodologies. Integration frameworks proposed in the past fail to provide for a fully integrated system. A new approach to

accommodate the changing dynamics of a plant’s operation is now possible with the Coordinated Knowledge Management method.

This paper reviews the components that need to be integrated to encompass intelligent process operation. It also reviews various

integration frameworks outlining limitations and presents a proposed method of integration based on knowledge management.
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1. Introduction

Modern industrial plants are expected to perform

complex tasks with high accuracy under uncertain

conditions. Task integration needs to include techniques

that are capable of effectively dealing with incomplete

information concerning the plant and its environment

within unexpected or unfamiliar conditions. In addition to

conventional control techniques using numeric algorithms

and process models, task integration should include

methods capable of self-learning (neural nets), methods

of organizing knowledge (Petri nets), techniques dealing

with incomplete or inexact information (fuzzy logic

strategies) and non-numeric techniques such as knowl-

edge-based methods. When these techniques are combined

through object-oriented programming, they form a power-

ful strategy for integration of tasks.

Intelligent operation has evolved through the integration

of aspects of artificial intelligence, operations research and

automotive control systems, computer science and control

theory [23]. Intelligent operation is utilized in a wide variety

of applications in disciplines such as engineering, medicine

and business. Some engineering applications using intelli-

gent operational strategies include control of advanced

robots, intelligent scheduling and planning, expert control

systems, voice control, intellectualized instruments, house-

hold appliances, flight vehicles, manufacturing systems and

mining applications [7]. The processing industry can benefit

from the use of intelligent system methodologies to improve

plant performance.

This paper begins with a description of the components,

which need to be integrated in the process industry. These

include data reconciliation, regulatory control, fault detection,

fault diagnosis, supervisory control, planning and scheduling.

Next a discussion on expert systems is presented and different

integration frameworks are then reviewed drawing from the

areas of process industries and management. Finally, a

coordinated method of task integration is presented, which

eliminates some of the shortcomings of previous methods.
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2. Operational tasks

The functional tasks which computer aided process

operations encompass can be partitioned into seven plant

operational tasks. The components that need to be integrated

include (i) data acquisition, (ii) data reconciliation, (iii)

regulatory control, (iv) fault detection and diagnosis, (v)

supervisory control, (vi) planning, and (vii) scheduling.

These tasks are categorized as low-, mid- and high-level

tasks. In the following sections these tasks will be outlined

starting from the low-level tasks followed by the mid- and

high-level tasks.

2.1. Low-level tasks

2.1.1. Data acquisition

The basic component is data acquisition. Process data is

acquired from the plant through sensors attached to the

plant. Transducers convert the data to a form recognizable

by a computer. The data is then used as a foundation either

directly or indirectly for every other task. Typical process

variable measurements include temperature, pressure, flow,

density, liquid level, viscosity, composition, electrical

heating, flow adjustment and alarms [40].

2.1.2. Data reconciliation

On-line process measurements are corrupted by errors

during measurement and transmission of data. These errors

are unavoidable and are caused by power supply fluctu-

ations, networks transmission, signal conversion noise and

changes in ambient temperature to name a few [34]. Two

types of errors are usually present: random and gross errors.

Random errors are small and are due to normal process

fluctuations. Gross errors, on the other hand are large and

are due to incorrect calibration or malfunction of instru-

ments, process leaks, etc. [53]. Before plant data can be

usefully used, it is therefore necessary to reconcile this data

into meaningful values. This is the objective of the data

reconciliation module. Techniques such as the Measure-

ment Test, Generalized Likelihood Ratio can be used in

conjunction with data reconciliation in order to identify the

presence and location of gross errors such as sensor drift or

bias [34].

Much research has been conducted into data reconcilia-

tion of steady state plant measurements in both linear and

nonlinear systems [6,8,9,11,12,26,31,57]. Generally this

involves finding the solution to a constrained least-squares

optimization problem minimizing the difference between

the measured values and the reconciled estimates. Given

this problem, one must also have a method in order to detect

when the process is at steady state [32,33].

Current research is tending towards dynamic data

reconciliation of nonlinear systems. This requires the use

of nonlinear state estimation techniques such as Kalman

filtering. Several references can be sited on the treatment

of the nonlinear and dynamic data reconciliation problem

[2,4,9,13,27,34,48,53].

Companies such as OSIsoft and Invensys have developed

packages such as Sigmafine and DATACON, respectively,

for industrial data reconciliation applications [41,58].

Industrial applications of data reconciliation are also

discussed in [8,14,44].

2.1.3. Regulatory control

Regulatory control occurs when the control system

functions to counteract the effect of disturbances in order to

maintain the output at its desired set point [40]. Output

variables may deviate from their set points due to

disturbance effects or set point changes. These deviations

can result in instability and poor plant performance. The

most common regulatory controller used in industry is the

PID controller.

2.2. Mid-level tasks

2.2.1. Fault detection and diagnosis

Fault detection and diagnosis involves the tracking of

process execution, detection of departures from normal

operation and identification of cause [52]. Fault detection

uses data in order to detect abnormal situations and isolate

faults. Faults include gross parameter changes in a model,

structural changes, malfunctioning sensors and actuators,

external obstacles such as clogging or outflows and defects

in construction such as cracks [66].

Many methods have been proposed in order to solve the

fault detection and diagnosis problem. The most commonly

employed solution methods of fault diagnosis systems

include (i) knowledge-based, (ii) model-based, and

(iii) pattern recognition-based methods [66].

Generally knowledge-based methods are used when

there is a lot of experience but not enough details to

develop accurate quantitative models. Analytic model-

based methods can be designed in order to minimize the

effects of unknown disturbances and perform consistent

sensitivity analysis. Pattern recognition approaches are

applicable to a wide variety of systems and exhibit real-

time characteristics [66].

Pattern recognition approaches include artificial neural

networks, which are massively connected networks that can

be trained to represent nonlinear functions at a high level of

accuracy [25]. In an artificial neural network, data are

presented to the network via the input layer, hidden layers

are used for storing information and the output layer is used

to present the output of the network. An example of a typical

multi-layered neural network is shown in Fig. 1. A well-

trained neural network can be viewed as a means of

knowledge representation and can provide both qualitative

and quantitative knowledge [30]. Knowledge is stored

through the structure of the neural networks through its

connection weights and local processing units. Neural

networks acquire knowledge from samples that are trained

Y. Power, P.A. Bahri / Knowledge-Based Systems 18 (2005) 89–9790



Download English Version:

https://daneshyari.com/en/article/9652964

Download Persian Version:

https://daneshyari.com/article/9652964

Daneshyari.com

https://daneshyari.com/en/article/9652964
https://daneshyari.com/article/9652964
https://daneshyari.com

