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a b s t r a c t

This paper presents several approximation theorems of a general contingent claim in terms of index
options.Wedemonstrate that any contingent claimon theprimitive securities in an infinite state economy
can be approximated arbitrarily close by a portfolio of index options. In addition, these index options are
associated with the same payout function, which belongs to a large and explicit class of one-variable
measurable functions. I also characterize the layer structure of a general contingent claim.
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1. Introduction

In a seminal paper concerning the complexity of securitiesmar-
kets, Ross (1976) showed that plain call and put options written on
an index, that is, a portfolio of primitive securities, span the com-
pletion of the set of primitive securities in a finite state economy.
Ross (1976) also proved that a complete market can be achieved
by trading plain options alone on this portfolio if the relevant set
of contingencies is represented by the events characterized by the
payoffs of the primitive securities. Therefore, when the market in-
formation set is entirely generated by theprimitive securities, plain
options on an index can complete a static securities market in the
same way as adding Arrow–Debreu securities in an incomplete
economy.Moreover, the underlying index can be chosen randomly
as the set of indexeswith such a spanningpowerhas a full Lebesgue
measure in an appropriate space of portfolios.1

Given its apparent importance, there has been considerable
interests in the literature to study the spanning problem in a
general setting to encompass asset pricing models in finance. For
instance, Galvani (2009) and Galvani and Troitsky (2010) proved
that with a Polish state space and an exogenous information set
given by the Borel σ -algebra, plain call options on any bounded
and resolving contingent claim can complete Lp-spaces, with 1 6

p 6 ∞, under mild conditions.2 Nachman (1987) showed the
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1 See Arditti and John (1980) and John (1981, 1984). Baptista (2003) examined
the spanning problem for American-type contingent claim in a finite state space.
2 A one-to-one claim is called a resolving contingent claim. Clearly, there is a

resolving claim in a finite state space if and only if there exists an injective index.

existence of one contingent claim and termed it as an efficient
fund, which spans the completion of the set of primitive securities
if the measurable algebra of the securities market is separable.
In addition, under a separable property on the asset space, this
efficient fund can be chosen as a portfolio of primitive securities.
Regarding the complexity of contingent claim space, Green and
Jarrow (1987) showed that all contingent claims written on
primitive securities have a finite layer structure. Nachman (1988)
further demonstrated that instead of options written on an index,
as formulated in Ross (1976), options on portfolios of call options
written on individual primitive securities can span the completion
of the set of primitive securities. Duan et al. (1992) showed that
the index options can approximate any contingent claim on the
systematic risk in a linear factor pricingmodel. See also Brown and
Ross (1991) and Galvani (2007).

In this paper, we demonstrate that Ross’s original spanning
results virtually hold in an approximate sense in a general static
securities market, without imposing any technical topological
conditions on the asset spaces and the state space. Specifically,
we show that any contingent claim on the primitive securities can
be approximated arbitrarily close by a portfolio of index options.
Furthermore, the payout functions of these index options can be
chosen as one explicit, single-argument function, in a fairly large
class of measurable functions. (Some examples are displayed in
Table 1.) Hence, plain index options span the completion of the set
of primitive securities; these index options complete the securities
market if the relevant sets of contingencies are represented by the
events characterized by the payoffs of the primitive securities. In
contrast to plain call options on a resolving contingent claim such
as in Ross (1976), Galvani (2009) and Galvani and Troitsky (2010),
or on an efficient fund as in Nachman (1987), our approximation
results rely onmultiple underlying indexes. Each underlying index
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Table 1
Index options in approximation theorems.

σ(t) Index option Approximation theorem
1

1+e−t Sigmoidal index option Theorem 2.1

1{t>K} Digital index option Theorem 2.1
max{x − K , 0} Call index option Theorem 2.7
max{K − x, 0} Put index option Theorem 2.7
max{x − K , 0} − max{x − L, 0} Call spread index option Theorems 2.1, 2.7
max{K − x, 0} − max{L − x, 0} Put spread index option Theorems 2.1, 2.7
max{x − K , 0} + max{L − x, 0} Strangle on index Theorem 2.7
max{x − K1, 0} − max{x − L1, 0} Condor on index Theorems 2.4, 2.7
−max{x − K2, 0} + max{x − L2, 0}
cos(t) Trigonometric index option Theorems 2.4, 2.7
sin(t) Trigonometric index option Theorems 2.4, 2.7
tan−1(γ t) Trigonometric index option Theorems 2.4, 2.7
cosh−1(t) Trigonometric index option Theorems 2.4, 2.7
et Exponential index option Theorem 2.5
t Product index option


(m · x + θ) Theorem 2.5

1
√
2π

 t
−∞

e−u2/2du Distribution index option Theorem 2.1

This table demonstrates some examples of the payoff function σ(t) and the corresponding index options. We also report
the relevant approximation theorem. In this table, a sigmoidal index option is an optionwith payoff functionσ(t) satisfying
condition (1) in Theorem 2.1. By a distribution index option we mean an option with a payoff function Φ(m · x + t),
whereΦ(t) is a cumulative probability distribution of a randomvariable. In these index options, Theorems 2.5–2.7 ensure
that the index space can be reduced by its bounded weights or the integral combinations. We also note that the strike
parameter K , L in these examples can be any specific positive number, so we do not need more than one ordinary call or
put index option.

has a remarkably simple structure and can be likened to a portfolio
of the primitive securities, plus a risk-free bond. The same cannot
be said, in general, for resolving assets of efficient funds. In fact, as
a resolving contingent claim is built on the exogenous information
set, it is somewhat mysterious in regard to its construction.3

To demonstrate our spanning results we consider a spanning
problem which is different from the classical spanning problem
initiated by Ross (1976).4 The classical spanning problem is to in-
vestigate whether plain call and put options of an index span all
contingent claims or not. Previous studies show that these plain
options have thepotential to complete themarket and any risk pro-
file canbe achieved through ahedgingportfolio of plain options. On
the contrary, we fix a payout function of index options, and inves-
tigate whether these index options written on various indexes can
span all contingent claims or not.Wepropose a newclass of deriva-
tives, options written on exchanged traded funds, to complete the
market. Therefore, our theoretical results can be regarded as evi-
dence favoring the expansion of the exotic option market.

Our approach to the spanning problem is inspired by the uni-
versal approximation theorem in the mathematical theory of neural
networks, in particular, the works of Cybenko (1989), Funahashi
(1989), Hornik et al. (1989), Stinchcombe and White (1990), and
Hornik (1991).

The paper proceeds as follows. In Section 2 we present our
approximation theorems. All proofs are given in Section 3. In
Section 4 we offer our conclusions.

2. Approximate spanning index options

Let (Ω,F , P) denote a probability space that represents the
state of uncertainty. An asset or security is modeled by an F -
measurable real-valued function. We study the set of contingent
claims as Lp(Ω,F , P) for a 1 6 p 6 ∞ (in Theorems 2.1–2.4),

3 It is equally obscure about the structure of an efficient fund presented in
Nachman (1987) and Duan et al. (1992).
4 See also Nachman (1987, 1988), Green and Jarrow (1987), Galvani (2009), and

Galvani and Troitsky (2010).

and L(Ω,F , P) (in Theorems 2.5–2.7).5 There are a finite number
of primitive securities, x1, . . . , xn, in the securities market, where
each xi ∈ L(Ω,F , P). We study underwhat conditions any contin-
gent claim in Lp(Ω,F , P) or L(Ω,F , P) can be approximated ar-
bitrarily well by index options, say, the limit under the Lp-topology
or the almost surely limit of a sequence of index options with formN

j=1 αjσ

mj · x + θj


,mj ∈ Rn, αj, θj ∈ R. Herem·x+θ = m1x1+

· · ·+mnxn+θ , wherem = (m1, . . . ,mn), represents an indexwith
mi units on the security xi and a cash position worth θ dollars.6
σ(·) is a one-variable R-valued function over R, and σ(·) denotes
the payout function of all index options on index m · x + θ . Many
examples of σ(·)will be given in Examples 2.1–2.4 and Table 1.

Specifically, let

H = span

σ(m · x + θ),m ∈ Rn, θ ∈ R


be a linear spanning space7 of index options σ(m · x + θ). We
examine the spanning power of H and verify Lp(Ω,F , P) =

H̄ under a suitable topology in the contingent claim space. Let
F {x1, . . . , xn} be a σ -subalgebra of F generated by the primitive
securities, x1, . . . , xn.

Theorem 2.1. Assume that σ : R → R is a bounded measurable
function satisfying

lim
t→∞

σ(t) = 1, lim
t→−∞

σ(t) = 0. (1)

1. For any 1 6 p < ∞, Lp(Ω,F {x1, . . . , xn}, P) = H̄, the closure of
H under the Lp-norm topology.

5 Brown and Ross (1991), Green and Jarrow (1987), and Ross (1976) considered
the spaces of contingent claims in other contexts such as the set of allF -measurable
functions, a set of all continuous functions, or a set of all real-valued functions.
Following Kreps (1981) and Harrison and Kreps (1979), we consider all assets with
a finite pth moment in Theorems 2.1–2.4. We examine the space of measurable
functions, L(Ω,F , P), in Theorem 2.5 through Theorem 2.7 concerning on general
contingent claim with respect to almost surely convergence.
6 θ should be viewed as θ1Ω , where 1Ω is defined by 1Ω (ω) = 1 for eachω inΩ .

1Ω is interpreted as the payoff of the risk-free asset or as the payoff of the numeraire
in a securities market.
7 Following Galvani (2009) and Galvani and Troitsky (2010), the element of H

contains finitely many components.



Download	English	Version:

https://daneshyari.com/en/article/965338

Download	Persian	Version:

https://daneshyari.com/article/965338

Daneshyari.com

https://daneshyari.com/en/article/965338
https://daneshyari.com/article/965338
https://daneshyari.com/

