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Abstract

A stochastic gradient is formulated based on deterministic gradient augmented with Cauchy

simulated annealing capable to reach a global minimum with a convergence speed significantly

faster when simulated annealing is used alone. In order to solve space-time variant inverse

problems known as blind source separation, a novel Helmholtz free energy contrast function,

H ¼ E � T0S; with imposed thermodynamics constraint at a constant temperature T0 was

introduced generalizing the Shannon maximum entropy S of the closed systems to the open

systems having non-zero input–output energy exchange E. Here, only the input data vector

was known while source vector and mixing matrix were unknown. A stochastic gradient was

successfully applied to solve inverse space-variant imaging problems on a concurrent pixel-by-

pixel basis with the unknown mixing matrix (imaging point spread function) varying from

pixel to pixel.
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1. Introduction

Gradient optimization is generally incapable of reaching global minimum of the
functional with multiple minimums [32]. A stochastic optimization known as
simulated annealing [1,39,40], is guaranteed to reach global minimum but with the
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very low speed of convergence. Geman and Geman proved in 1984 the convergence
guaranteed to find the global minimum by means of classical Gaussian annealing to
be an exceedingly slow admissible cooling schedule, TaðtÞ ¼ T0= log t: Their proof
used the Metropolis annealing algorithm to generate random walks based on
Gaussian distribution [17]. Szu in 1986 [39,40] had extended Geman–Geman
convergence proof for the case of the Cauchy noise with unbounded variance
combining naturally both Gaussian random walks with Levi random flights
achieving the admissible cooling schedule T cðtÞ ¼ T0=t: In this paper, we have
augmented the classical gradient optimization with the fast fluctuating term using the
rapid Cauchy annealing cooling schedule. We coined this approach the stochastic
gradient optimization. One important application of the derived stochastic gradient
optimization aimed to be unsupervised learning applied to the solution of the highly
non-stationary linear inverse problems known as blind source separation (BSS)
[11,6,4,3,10,9,12,13,23,24,26,33,46]. In this regard we have introduced a novel
Helmholtz free energy contrast function, H ¼ E � T0S; with the imposed
thermodynamics constraint at a constant temperature T0 generalizing the Shannon
maximum entropy S of the closed systems to the open systems having non-zero
input–output energy exchange E. Following BSS terminology for linear data models,
only the input data vector was known while the source vector and mixing matrix
were unknown. In comparison with a number of the cost functions for BSS already
proposed we have demonstrated a feature of the Helmholtz free energy cost function
to have global minimum at the solution of the linear inverse problem. That enabled
the applicability of the proposed cost function to solve the BSS problems when the
unknown mixing matrix varied from measurement to measurement. In this paper, we
have successfully applied a stochastic gradient optimization to solve inverse space-
variant imaging problems on a concurrent pixel-by-pixel basis with the unknown
mixing matrix (imaging point spread function) varying from pixel to pixel.
The organization of the paper is as follows. In Section 2, we have introduced the

BSS problem as well as the Helmholtz free energy cost function with the classical
gradient solution for the BSS problem. Section 3 gives the convergence proofs for
both Cauchy and Gaussian annealing, along with their differences in free space and
in gradient potential wells. The stochastic gradient is also introduced in Section 3.
Performances of the 2-dimensional Cauchy and Gaussian annealing search
algorithms as well as performances of stochastic gradient algorithm with Cauchy
and Gaussian cooling schedule were compared with multiple minimums on the
objective function. Section 4 gives more detailed description and illustration of the
Helmholtz free energy H ¼ E � T0S applied on the solution of both linear and
nonlinear BSS problems. Comparison has been carried out with the adaptive
independent component analysis (ICA) algorithms for linear [3,6,10,33] and post-
nonlinear [46] mixtures. The conclusion is given in Section 5. For readers’
convenience, Appendix A provides a derivation of the higher-dimensional Cauchy
annealing algorithm based on the transformation of the higher-dimensional Cauchy
pdf from Cartesian to hyper-spherical coordinates. Biological conjecture of the
unsupervised learning based on the minimum of the Helmholtz free energy is given in
Appendix B.

ARTICLE IN PRESS

H. Szu, I. Kopriva / Neurocomputing 68 (2005) 130–160 131



Download English Version:

https://daneshyari.com/en/article/9653392

Download Persian Version:

https://daneshyari.com/article/9653392

Daneshyari.com

https://daneshyari.com/en/article/9653392
https://daneshyari.com/article/9653392
https://daneshyari.com

