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a b s t r a c t

We show that an intrinsic property of a large class of rational bubbles is their capacity to relax the agents’
debt limits. Any bubble that preserves the set of pricing kernels, or equivalently, the asset span, has
effectively an identical effect on consumption and real interest rates as an appropriate relaxation of debt
limits, proportional to the size of the bubble. Thus the collapse of a bubble amounts to a contraction of
agents’ debt limits, and conversely, a bubble can arise to supplement the credit available in the economy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Episodes of large stock market run-ups followed by abrupt
crashes, without matching movements in fundamentals, are re-
ferred to as bubbles. Formally, a (rational) bubble is defined as the
price of an asset in excess of its fundamental value, computed as
the discounted (at market rates) present value of dividends.

We show that a large class of rational bubbles are equivalent,
from the point of view of consumption and real interest rates, to
a relaxation of agents’ debt limits. An equilibrium (under some
fixed credit limits) with bubbles in the prices of some assets al-
lows agents the same level of consumption they would get in a no-
bubble equilibrium of an alternative economy with more relaxed
credit limits.

We build on the insight of Kocherlakota (2008), who showed
that arbitrary discounted (by the pricing kernel) positive martin-
gales can be introduced into asset prices as bubbles, while leaving
agents’ consumption and the pricing kernel unchanged, as long as
the debt limits of the agents are allowed to be adjusted upwards
(that is, tightened) by their initial endowment of the assets multi-
plied with the bubble term. In other words, although at the bubbly
equilibrium agents are subject to tighter debt limit, they can still
enjoy the same level of consumption they would under more re-
laxed debt limits (and no bubbles in the asset prices). In that sense,
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bubbles are equivalent to a relaxation of debt limits. The modified
debt limits bind in exactly the same dates and states. Kocherlakota
(2008) refers to this result as the ‘‘bubble equivalence theorem’’,
and to this technique of introducing bubbles as ‘‘bubble injections’’.

At the heart of the argument is that the introduction of a bub-
ble gives consumers awindfall, proportional to their initial holding
of the asset, which can be sterilized, leaving their budgets unaf-
fected, by an appropriate tightening of the debt limits. Conversely,
the pricking of a bubble and the resulting drop in agents’ wealth
can be compensated by a relaxation of debt limits.

A major limitation of Kocherlakota (2008) result is the assump-
tion that agents can trade in a full set of state-contingent claims
to consumption next period, in addition to the existing long-lived
securities. Hence one might infer that the bubble equivalence the-
orem is associated to knife-edge situations, and that it might not
apply to incomplete markets environments or even to economies
with dynamically complete markets (rather than Arrow–Debreu
complete).

We prove that a version of the bubble equivalence theorem
holds even when markets are incomplete, or only dynamically
complete. The equivalence has two parts. The bubble injection di-
rection characterizes completely the set of processes that can be
injected as bubbles in asset prices through a tightening of debt lim-
its, while preserving the real variables. Such processes are called
pricing kernel-preserving, or kernel-preserving, for short. The reverse
direction, or the bubble pricking direction, shows that a large class
of bubbles (those that are kernel-preserving) can be pricked and
result in identical real variables, as long as agents’ debt limits are
relaxed.

The kernel-preserving processes, as the name suggests, are
those nonnegative processes that result in an identical set of pric-
ing kernels if added to (bubble-free) asset prices, or conversely,
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if subtracted from (bubbly) asset prices. Equivalently, they are
discounted martingales (under some pricing kernel) that preserve
the asset span (if added to bubble-free prices, or deducted from
bubbly prices). A kernel-preserving process is also a martingale
when discounted by any pricing kernel associated to the initial
prices or any pricing kernel associated to the prices inflated by
the process. In particular, any nonnegative process which equals
the value of a self-financing trading strategy will generically be a
kernel-preserving process.

Our results show that the setup of Kocherlakota (2008) with
Arrow-complete markets and additional, redundant long-lived as-
sets (rather than dynamically complete markets) is not innocuous.
In his framework, the pricing kernel with or without a bubble (in
the long-lived assets) is the same and is uniquely pinned down by
the prices of theArrow securities.With dynamically completemar-
kets, the injection or the pricking of a bubble can distort the asset
span and the pricing kernel, and not lead to an equivalent equilib-
rium.

The bubble equivalence theorem has additional appeal in envi-
ronments with endogenous debt limits, as in Alvarez and Jermann
(2000). In these models, agents have the option to default on debt
and receive a predetermined continuation utility, and the markets
(competitive financial intermediaries) select the largest debt lim-
its so that repayment is always individually rational given future
bounds on debt. It turns out that both the debt limits of the bubble-
free equilibrium and the tighter debt limits of the equivalent
bubbly equilibrium are the endogenous bounds allowing for max-
imal credit expansion and preventing default. We allow for more
general punishments after default than in Kocherlakota (2008). In
particular,we cover the casewhere upondefault the agents are for-
bidden to carry debt (Bulow and Rogoff, 1989; Hellwig and Loren-
zoni, 2009). Therefore the ‘‘incomplete markets’’ in the title of the
paper refers to both environments with exogenously, respectively
endogenously incomplete (due to limited enforcement) markets.

It is easy to misinterpret the injection direction of the bubble
equivalence theorem as a ‘‘license’’ to create bubbles freely. How-
ever, bubbles in positive supply assets cannot exist in economies
with high interest rates, that iswith finite present value of aggregate
consumption (Santos andWoodford, 1997;Werner, 2014; Kocher-
lakota, 1992), as long as agents are not prevented from reducing
their share holdings, that is if their debt limits are nonpositive. In-
tuitively, bubbles growon average at the rate of interest rates.With
high interest rates, the bubble must become very large relative to
aggregate endowment, even if this happenswith small probability.
But this is incompatible with the presence of optimizing, forward
looking agents, who do not allow their financial wealth to exceed
the present value of their future consumption. As shown by Bid-
ian (2011, Chapter 2) and Bidian (2014a), this argument against
the existence of bubbles in economies with high interest rates
is extremely robust and applies to environments with asymmet-
ric information, heterogeneous beliefs and quite general portfolio
constraints.

Therefore with high interest rates, the tighter debt bounds
needed to sterilize the wealth effects of a bubble injection in an
asset in positive supply must be positive at some dates and states
(even though this may happen with arbitrarily small probability).
However, if an asset is in zero supply, and initially none of the
agents hold any shares, a bubble injection has no wealth or allo-
cational effects. One can inject ‘‘freely’’ any (nonnegative) kernel-
preserving process as a bubble into the price of that asset, while
preserving real interest rates and agents’ consumption and debt
limits.

Low interest rates arise naturally with the enforcement limita-
tions studied in Section 4, since in equilibrium the interest rates
adjust to a lower level to entice agents to repay their debt and pre-
vent default. Hellwig and Lorenzoni (2009) (see alsoWerner, 2014)

show that if the penalty for default is an interdiction to borrow, then
all non-autarchic equilibria must in fact have low interest rates,
and bubble injections with nonpositive debt limits are possible.
Bidian (2011, Chapter 4) and Bidian (2014b) show that low interest
rates can arise in equilibrium and that bubble injections with non-
positive debt limits are possible for the other common penalties
for default encountered in the literature: a permanent or a tempo-
rary interdiction to trade after default. All the mentioned examples
of bubble injections with nonpositive debt limits feature complete
markets.

The bubble pricking direction of Theorem 3.3 shows that the
intrinsic feature of kernel-preserving bubbles is to relax financial
constraints. Such bubblesmust be unambiguous, in that they do not
vanish if the present value of dividends (fundamental value) is cal-
culated using any valid pricing kernel. It follows that, for general
environmentswith incompletemarkets, an unexpected collapse of
a kernel-preserving bubblewould not affect agents’ consumption if
their debt limits are relaxed by an amount proportional to the size
of the bubble. In the absence of such an increase in the availability
of credit, a bubble collapse amounts to a credit crunch, and there-
fore can be contractionary (see, for example, Guerrieri and Loren-
zoni, 2011).

Therefore kernel-preserving bubbles act as devices that relax
agents’ debt limits. A host of recent papers point out similarly,
but in very specific environments, that bubbles can arise in the
presence of financial frictions, and help relax the underlying
borrowing constraints (Kocherlakota, 2009; Martin and Ventura,
2012; Giglio and Severo, 2012; Farhi and Tirole, 2012). These
bubbles facilitate the transfer of resources from unproductive
entrepreneurs to the productive ones, by increasing the borrowing
capacity of the latter. Miao andWang (2011) make a related point,
but they emphasize themultiplicity of equilibria in economieswith
limited enforcement, studied also in Hellwig and Lorenzoni (2009)
and Bidian (2014b). In their model, bubbles are defined as the
difference between the value of the firm and the value predicted
using the q theory of investment. These papers analyze the
production sector, shutting down (non-entrepreneurs) consumers
from borrowing and lending. By contrast, we intentionally focus
squarely on the consumer sector, allowing consumers to borrow
and lend to each other, in a Bewley–Aiyagari environment.

2. Model

Time periods are indexed by the set N := {0, 1, . . .}. The
uncertainty is described by a probability space (Ω, F , P) and by
the filtration (Ft)

∞

t=0, which is an increasing sequence of finite
partitions Ft ⊂ F on the set of states of the world Ω with F0 =

{∅, Ω}. We interpret Ft as the information available at period t .
Let X be the set of all stochastic processes adapted to (Ft)

∞

t=0,
1

and denote by X+ (respectively X++) the processes x ∈ X such
that xt ≥ 0 P-almost surely (respectively xt > 0 P-almost surely)
for all t ∈ N. All statements, equalities, and inequalities involving
random variables are assumed to hold only ‘‘P-almost surely’’, and
we will omit adding this qualifier. When K , L ∈ N \ {0}, let
XK×L, respectively XK×L

+ be the set of vector (or matrix) processes
(yij)1≤i≤K ,1≤j≤L with yij ∈ X , respectively yij ∈ X+.

There is a single consumption good and a finite number, I , of
consumers. An agent i ∈ {1, 2, . . . , I} has preferences represented
by a utility U : X+ → R given by U i(c) = E


∞

t=0 u
i
t(c

i
t),

where c it is the consumption of i, and E(·) is the expectation
operator with respect to probability P . The per-period utility ui

t :

R+ → R is strictly increasing. The conditional expectation given

1 This is the set of sequences x = (xt )t∈N of random variables xt : Ω → R such
that xt is Ft -measurable.
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