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Abstract

Anticipating future events is a crucial function of the central nervous system and can be

modelled by Kalman filter-like mechanisms, which are optimal for predicting linear dynamical

systems. Connectionist representation of such mechanisms with Hebbian learning rules has not

yet been derived. We show that the recursive prediction error method offers a solution that can

be mapped onto the entorhinal–hippocampal loop in a biologically plausible way. Model

predictions are provided.
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1. Introduction

Linear dynamical systems (LDS) are widely applied tools in state estimation and
control tasks. The so-called Kalman-filter recursion (KFR) makes the inference in
LDS simple; the resulting estimations are unbiased and have minimized covariance.
Here, an approximation of the KFR is provided (Section 2) by applying the recursive
prediction error (RPE) method [5]. We show that the approximation (i) can be
represented in neuronal form, (ii) is efficient and (iii) can be mapped (Section 3) onto
the entorhinal–hippocampal (EC–HC) loop, the center of memory functions.
Conclusions are drawn in Section 4.
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2. Approximated Kalman-filter recursion

Consider the following LDS:

observation process : yt ¼ Hxt þ nt; (1)

hidden process : xtþ1 ¼ Fxt þmt; (2)

where variables mt / Nð0;PÞ and nt / Nð0;SÞ are independent Gaussian noise
processes. The task is to estimate the hidden variables xt 2 Rn given the series of
observations yt 2 Rp; tpt: For squared norm in the cost, the optimal solution was
derived in [4]. The prediction equation is used to estimate x before the ðt þ 1Þth

measurement:

x̂
ðtþ1jtÞ

¼ Fx̂
ðtjt�1Þ

þ Ktðyt �Hx̂
ðtjt�1Þ

Þ ¼ Fx̂
ðtjtÞ; (3)

where Kt is the ‘Kalman gain’, which can be computed by means of a priori and
posteriori covariance matrices of x̂t: Expression et ¼ yt �Hx̂

ðtjt�1Þ in Eq. (3) can be
identified as the reconstruction error, because, for the noiseless case, Hx̂

ðtjt�1Þ should
perfectly match the input. Kalman-gain balances error et and model-based
prediction Fx̂

ðtjt�1Þ to optimize the estimation.
The first problem of the classical solution is that covariance matrices of

measurement and observation noises (P and S) are generally assumed to be known.
The second problem is that to ensure dynamic adaptation of the Kalman gain, the
algorithm requires the calculation of a matrix inversion, which is hard to interpret in
neurobiological terms. In this section we derive an approximation of the Kalman
gain, which eliminates these problems. Our approximation makes use of the RPE
method. The resulting scheme is (i) local, (ii) well suited to ‘track’ the changing world
and (iii) asymptotically optimal by construction under mild conditions [9]. Let Ktz 	

yt: 
 Kz denote an arbitrary parametrization of Kt; where :
 denotes elementwise
multiplication. The RPE approximation of KFR using this arbitrary parametriza-
tion is as follows:
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t
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in which yt
2 Rp; x̂tþ1

¼ x̂
ðtþ1jtÞ: For simplicity, the notation of the error’s explicit

dependence on y is dropped. Let us suppose that a suboptimal matrix Kðy0
Þ is given

at time t ¼ 0: Our goal is to tune parameter yt in order to minimize JkðykÞ ¼
1
2

E½ð�t
kÞ

2
� with respect to yk; where E½:� is the expectation operator and �t

k ¼
P

l Kkle
t
l

is the transformed error. Stochastic gradient approximation provides the following
update equations:

ytþ1
k ¼ yt

k þ a
X

lj

KklHljW jk�
t
k; (5)

W tþ1
ik ¼

X
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F ijW
t
jkxk � yt

i

X
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t
jkxk þ dik�

t
k; (6)
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