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Abstract

This paper proposes a new method to obtain sparseness and structure detection for a class

of kernel machines related to least-squares support vector machines (LS-SVMs). The key

method is to adopt an hierarchical modeling strategy. Here, the first level consists of an LS-

SVM substrate which is based upon an LS-SVM formulation with additive regularization

trade-off. This regularization trade-off is determined at higher levels such that sparse

representations and/or structure detection are obtained. Using the necessary and sufficient

conditions for optimality given by the Karush–Kuhn–Tucker conditions, one can guide the

interaction between different levels via a well-defined set of hyper-parameters. From a

computational point of view, all levels can be fused into a single convex optimization problem.

Furthermore, the principle is applied in order to optimize the validation performance of the

resulting kernel machine. Sparse representations as well as structure detection are obtained,

respectively, by using an L1 regularization scheme and a measure of maximal variation at the

second level. A number of case studies indicate the usefulness of these approaches both with

respect to interpretability of the final model as well as generalization performance.
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1. Introduction

The problem of inference of a model based on a finite set of observational data is
often ill-posed [19]. To address this problem, typically a form of capacity control is
introduced which is often expressed mathematically in the form of regularization
[28]. Regularized cost functions have been applied successfully, e.g. in splines,
multilayer perceptrons, regularization networks [18], support vector machines
(SVM) and related methods (see, e.g. [11]). SVM [29] is a powerful methodology
for solving problems in nonlinear classification, function estimation and density
estimation which has also led to many other recent developments in kernel-based
learning methods in general [22]. SVMs have been introduced within the context of
statistical learning theory and structural risk minimization. In the methods, one
solves convex optimization problems, typically quadratic programs. Least-Squares
Support Vector Machines (LS-SVMs) [21,26] are reformulations to standard SVMs
which lead to solving linear Karush–Kuhn–Tucker (KKT) systems for classifica-
tion tasks as well as regression. Primal–dual LS-SVM formulations have also been
given for KFDA, KPCA, KCCA, KPLS, recurrent networks and control [27].1

Recently, LS-SVM methods were studied in combination with additive models [10]
resulting in so-called componentwise LS-SVMs [15] which are suitable for
component selection. So-called additive models consisting of a sum of lower
dimensional nonlinearities per component (variable) have become one of the
widely used non-parametric techniques as they offer a compromise between the
somewhat conflicting requirements of flexibility, dimensionality and interpretability
(see e.g. [11]).

The relative importance between the smoothness of the solution (as defined in
different ways) and the norm of the residuals in the cost function involves a tuning
parameter, usually called the regularization constant. The determination of
regularization constants is important in order to achieve good generalization
performance with the trained model and is an important problem in statistics and
learning theory (see e.g. [11–13,22,25]). Several model selection criteria have been
proposed in the literature to tune this constant. Special attention was given in the
machine learning community to cross-validation and leave-one-out-based methods
[24] and fast implementations were studied in the context of kernel machines (see e.g.
[2]). In the following paper, the performance on an independent validation data-
set is considered. The optimization of the regularization constant in LS-SVMs
with respect to this criterion can be non-convex (and even non-smooth) in general.
In order to overcome this difficulty, a re-parameterization of the regularization
trade-off has been recently introduced in [16] referred to as additive regularization

trade-off. When applied to the LS-SVM formulation, this leads to LS-SVM
substrates. In [16], it was illustrated how to employ these LS-SVM substrates
to obtain models which were optimal in training and validation or cross-valida-
tion sense.
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1The Internet portal for LS-SVM related research and software can be found at http://

www.esat.kuleuven.ac.be/sista/lssvmlab.
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