
On Type Inference in the

Intersection Type Discipline

Gérard Boudol and Pascal Zimmer1 ,2

INRIA Sophia Antipolis, BP93
06902 Sophia Antipolis Cedex, France

Abstract

We introduce a new unification procedure for the type inference problem in the intersection type
discipline. We show that unification exactly corresponds to reduction in an extended λ-calculus,
where one never erases arguments that would be discarded by ordinary β-reduction. We show
that our notion of unification allows us to compute a principal typing for any strongly normalizing
λ-expression.

Keywords: λ-calculus, type systems, type inference, unification

1 Introduction

Type inference – say, for any λ-calculus based model –, as it is now presented
in textbooks (see for instance [18], p. 136), generally proceeds as follows:

1. Assign a type to the expression and each subexpression. For any compound
expression or variable, use a type variable.

2. Generate a set of constraints on types, reflecting the fact that, if a function
is applied to an argument, then the type of the argument must agree with
the type of the domain of the function.

3. Solve these constraints.

1 email: Gerard.Boudol@sophia.inria.fr
2 email: Pascal.Zimmer@sophia.inria.fr

Electronic Notes in Theoretical Computer Science 136 (2005) 23–42

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.06.016

mailto:Gerard.Boudol@sophia.inria.fr
mailto:Pascal.Zimmer@sophia.inria.fr
http://www.elsevier.com/locate/entcs


This design of a type inference algorithm was first (as far as we can see)
proposed by J. Morris in his thesis [20]. At the first step of this procedure, a
decision has to be taken, in order to build the type of a function, that is an
abstraction λxM : in which way do we consider the collection of type variables
t1, . . . , tm assigned to the various occurrences of x in M as a type? There are
various possibilities, which are not unrelated:

• Simple (monomorphic, possibly recursive) types: a variable x has only one
type. That is, one has the constraint that the ti’s are equal (with or without
“occur check”).

• Generalized (polymorphic) types: the constraint here is that x is only used
in M with types which are instances of the type of the domain of λxM .

• Intersection types: the collection t1, . . . , tm is considered as a type, inter-
preted as the conjunction of the ti’s.

• Subtyping: x is only used in M with types which are subtypes of the type
of the domain of λxM .

(The question, and thus the possible answers, would be different regarding the
“let” construct, that is (λxMN), where the abstraction λxM does not have
to be explicitly typed, see for instance [11,17].)

In this paper we are interested in type inference for the intersection type
discipline, introduced by Coppo and Dezani [8], and independently by Pot-
tinger [21] (see [2,4] for a complete review of various systems with intersection
types). There is no algorithm for deciding typability in this system, called
“system D” in [16], since this is equivalent to strong normalizability. How-
ever, one can compute a principal typing for any typable expression [9,16,24],
that is a typing from which any other typing for the given expression can be
derived, by means of suitable operations, among which the most important
one is expansion (for an explanation of this notion, see for instance [3]). Type
inference can be achieved by normalizing the expression, and then typing the
normal form, but obviously this cannot be extended to a language where one
may wish to type non-terminating programs. Ronchi proposed in [23] a di-
rect procedure, based on a generalized unification mechanism. This was later
revisited by Kfoury [13], and then Kfoury and Wells [14], who used explicit
expansion variables, in order to provide a better understanding of the opera-
tion of expansion, and showed that type inference is decidable for subsystems
with a bounded rank restriction.

In this paper we introduce a new way of solving the typing constraints
that arise from type inference for intersection types. To give an idea of our
generalized unification procedure, let us recall that the constraints to solve

G. Boudol, P. Zimmer / Electronic Notes in Theoretical Computer Science 136 (2005) 23–4224



Download	English	Version:

https://daneshyari.com/en/article/9655871

Download	Persian	Version:

https://daneshyari.com/article/9655871

Daneshyari.com

https://daneshyari.com/en/article/9655871
https://daneshyari.com/article/9655871
https://daneshyari.com/

