
Programming Examples Needing

Polymorphic Recursion

J. J. Hallett1

Department of Computer Science
Boston University

Boston, USA

A. J. Kfoury2

Department of Computer Science
Boston University

Boston, USA

Abstract

Inferring types for polymorphic recursive function definitions (abbreviated to polymorphic recur-
sion) is a recurring topic on the mailing lists of popular typed programming languages. This is
despite the fact that type inference for polymorphic recursion using ∀-types has been proved un-
decidable. This report presents several programming examples involving polymorphic recursion
and determines their typability under various type systems, including the Hindley-Milner system,
an intersection-type system, and extensions of these two. The goal of this report is to show that
many of these examples are typable using a system of intersection types as an alternative form of
polymorphism. By accomplishing this, we hope to lay the foundation for future research into a
decidable intersection-type inference algorithm.
We do not provide a comprehensive survey of type systems appropriate for polymorphic recursion,
with or without type annotations inserted in the source language. Rather, we focus on examples for
which types may be inferred without type annotations, with an emphasis on systems of intersection-
types.

Keywords: polymorphic recursion, intersection types, finitary polymorphism , examples

1 Email: jhalllett@cs.bu.edu
2 Email: kfoury@cs.bu.edu

Electronic Notes in Theoretical Computer Science 136 (2005) 57–102

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.06.014

mailto:jhallett@cs.bu.edu
mailto:kfoury@cs.bu.edu
http://www.elsevier.com/locate/entcs


1 Introduction

Background and Motivation

Type inference in the presence of polymorphic recursion using ∀-types (the
familiar “type schemes” of SML) is undecidable
[10,11,4]. Attempts to work around this limitation include explicit type anno-
tations by the user [8] and user-tunable iteration limits [17]. However, both of
these approaches require the programmer to be actively engaged in the type
checking process, thereby defeating the goal of automatic type inference and
transparent type checking. There is also an implementation of SML that al-
lows the user to switch between the standard type system (which is restricted
to monomorphic recursion) and a type system augmented with polymorphic
recursion using ∀-types, in an attempt to prove that “hard” examples of poly-
morphic recursion do not arise in practice [1]. Yet, practical examples of
programs requiring polymorphic recursion continually appear in discussions
on the mailing lists of programming languages such as SML, Haskell, and
OCaml.

Contribution of the Report

This document attempts to lay the foundation for further research into the
typability of implicit polymorphic recursion by discussing several examples
which fail to type under the standard type system of SML – also called the
Hindley-Milner system. The examples are written (mostly) in SML syntax
(one example is presented in Haskell syntax) and are accompanied by the
corresponding error found by the SML/NJ type checker. A few of the examples
are also shown in Haskell syntax with its corresponding GHC error message
for the side purpose of comparing the error reporting of the SML/NJ and
GHC compilers.

We also discuss examples which remain untypable using the Hindley-Milner
system augmented with polymorphic recursion with ∀-types – also called the
Milner-Mycroft system – but are typable using an intersection-type system.
These examples support the use of intersection types as an alternative to ∀-
types to represent polymorphism.

In addition, we elucidate the need for what we call “infinite-width” inter-
section types by examples. However, we do not extend our standard (finite-
width) intersection type system in this way, because we do not know a straight-
forward extension of the standard system and developing one is beyond the
scope of this report. Consequently, we resort to polymorphic recursion with
∀-types for these examples; i.e., we present examples which are not typable

J.J. Hallett, A.J. Kfoury / Electronic Notes in Theoretical Computer Science 136 (2005) 57–10258



Download English Version:

https://daneshyari.com/en/article/9655873

Download Persian Version:

https://daneshyari.com/article/9655873

Daneshyari.com

https://daneshyari.com/en/article/9655873
https://daneshyari.com/article/9655873
https://daneshyari.com

