
An Abstract Interpretation Toolkit for µCRL

Jaco van de Pol Miguel Valero Espada1 ,2

Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands

Abstract

This paper describes a toolkit that assists in the task of generating abstract approximations of
process algebraic specifications written in the language µCRL. Abstractions are represented by
Modal Labelled Transition Systems, which are mixed transition systems with may and must modal-
ities. The approach permits to infer the satisfaction or refutation of safety and liveness properties
expressed in the (action-based) µ-calculus. The tool supports the abstraction of states and action
labels which allows to deal with infinitely branching systems.

Keywords: Abstract Interpretation, Modal Transition Systems, Abstract Model Checking, µCRL
Toolset.

1 Introduction

The automatic verification of distributed systems is limited by the well known
state explosion problem. Abstraction is a useful approach to reduce the com-
plexity of such systems. From a concrete specification, it is possible to extract
an abstract approximation that preserves some interesting properties of the
original. In [32], we have presented the theoretical framework for abstracting
µCRL [16] specifications. µCRL is a language that combines ACP style pro-
cess algebra [3] with abstract data types. In this paper, we will describe the
toolkit that implements the theory.

1 Email: {vdpol, miguel}@cwi.nl
2 Partially supported by PROGRESS, the embedded systems research program of the
Dutch organisation for Scientific Research NWO, the Dutch Ministry of Economic Affairs
and the Technology Foundation STW, grant CES.5009.

Electronic Notes in Theoretical Computer Science 133 (2005) 295–313

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.08.070

http://www.elsevier.com/locate/entcs


Semantically, abstractions are represented by Modal Labelled Transition
Systems [23], which are mixed transition systems in which transitions are
labelled with actions and with two modalities: may and must. May transitions
determine the actions that are part of some refinements of the system while
must transitions denote the ones that necessarily appear in all refinements.
The use of the two modalities allows to infer the satisfaction or refutation of
formulas written in (action-based) µ-calculus [22] from the abstract to the
concrete system.

The implementation of the previously developed theory is an indispensable
step in order to apply abstract interpretation techniques to realistic systems.
There exist different abstraction approaches that can be applied within the
verification methodology. For example, variable hiding or pointwise abstrac-
tion in which, first, the value of some variables of the specification is consid-
ered as unknown, subsequently, extra non-determinism is added to the system
when there are predicates over the abstracted variables. Another automated
abstraction technique is the so-called predicate abstraction in which only the
value of some conditions is retained and propagated over the dependent predi-
cates of the specification. Program slicing is a technique that tries to eliminate
all parts of the specification that are not relevant for the current verification.

The most common abstraction technique consists in interpreting the con-
crete specification over a smaller data domain. The user selects the set of
variables to abstract and provides a new abstract domain that reflects some
aspects of the original. This technique requires creative human interaction in
order to select the parts of the system that are suitable to abstract and to
provide the corresponding data domains. Furthermore, the user must ensure
that the abstract interpretation satisfies some so-called safety requirements.

Our tool implements the automatic pointwise abstraction and, moreover,
assists the user to create his own abstractions. The tool supports the use
of two mainstream techniques for data abstraction. One proposed by Long,
Grumberg and Clarke [6,24], in which the concrete and the abstract data
domain are related via a homomorphic function and another based on Cousots’
Abstract Interpretation theory (we use Abstract Interpretation with upper
cases to refer to Cousots’ work and abstract interpretation with lower cases
to denote the general framework), see for example [7,8,20,21], in which data
is related by Galois Connections. A lifting mechanism is also implemented
which allows to automatically build Galois Connections from homomorphisms,
see [28].

Standard abstraction frameworks are only based on the abstraction of
states which make them unable to deal with infinitely branching systems with
action labels. A unique feature of our tool is that it allows the abstraction of

J. van de Pol, M. Valero Espada / Electron. Notes Theor. Comput. Sci. 133 (2005) 295–313296



Download English Version:

https://daneshyari.com/en/article/9655906

Download Persian Version:

https://daneshyari.com/article/9655906

Daneshyari.com

https://daneshyari.com/en/article/9655906
https://daneshyari.com/article/9655906
https://daneshyari.com

