
Towards a Complete Static Analyser for Java:

an Abstract Interpretation Framework and its

Implementation

Isabelle Pollet1

University of Namur

Baudouin Le Charlier2

Université Catholique de Louvain

Abstract

We present an abstract interpretation framework for a subset of Java (without concurrency). The
framework uses a structural abstract domain whose concretization function is parameterized on a
relation between abstract and concrete locations. When structurally incomptatible objects may
be referred to by the same variable at a given program point, structural information is discarded
and replaced by an approximated information about the objects (our presentation concentrates
on type information). Plain structural information allows precise intra-procedural analysis but is
quickly lost when returning from a method call. To overcome this limitation, relational structural
information is introduced, which enables a precise inter-procedural analysis without resorting to
inlining.
The paper contains an overview of the work. We describe parts of the standard and abstract
semantics; then, we briefly explain the fixpoint algorithms used by our implementation; lastly, we
provide experimental results for small programs.

Keywords: Abstract Interpretation, Java, Type Analysis, Pointer Analysis, Program Verification,
Program Specialization.

1 Email:ipo@info.fundp.ac.be
2 Email:blc@info.ucl.ac.be

Electronic Notes in Theoretical Computer Science 131 (2005) 85–98

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.01.025

mailto:ipo@info.fundp.ac.be
mailto:blc@info.ucl.ac.be
http://www.elsevier.com/locate/entcs


Introduction

There is a broad range of applications for the static analysis of Java. However,
a major issue is the correctness of the analysis itself, especially when it is used
in optimizing compilers. But, designing an analysis and proving its correctness
is often tedious and error-prone. It is therefore reasonable attempting to design
a ‘generic framework’ easily adaptable to perform various kinds of analyses in
order to minimize the correctness proof effort. Our work is a contribution to
such a ‘generic framework’: We define and implement a Java code analyser
based on the abstract interpretation methodology [8,9,10].

We limit our analysis to a (partly arbitrary) subset of the language. This
subset is, on the one hand, representative enough of the main Java features
and, on the other hand, sufficiently small to be completely dealt with in a
first approach. Concurrency is the main Java feature that we eliminate. This
aspect is very important but rather ‘orthogonal’ to the object-oriented aspects.
We also assume the availability of the complete source code, ignoring, at the
moment, the problem of dynamic class loading (see e.g. [17]).

We apply the abstract interpretation methodology as follows: We define a
straightforward standard semantics, abstract domains and an abstract seman-
tics on those domains, which correctly approximates the standard semantics.
We finally use a post-fixpoint algorithm to compute a (relevant part of) the
abstract semantics.

Our abstract domains contain structural information and closely resemble
to the standard domain (consisting of an environment and a store). Abstract
locations may be annotated with various kind of information, making the
framework generic. Structure sharing at the abstract level can be interpreted
in several different ways, at the standard level, giving rise to three variants of
the abstract domains 3 .

The result of an analysis is a table of abstract input/output states describ-
ing method and constructor calls that can potentially arise during an actual
standard execution. Such a table is similar to (and allows one to easily build)
a (precise) call graph [12,26] for the whole program.

This paper presents an overview 4 of the work and is composed of five
main sections. Section 1 provides a brief overview of the standard semantics.
Section 2 describes the abstract domains. Section 3 sketches the abstract
semantics definition. Section 4 details the results of the analysis for small
programs. Section 5 discusses the related work.

3 A preliminary presentation of the abstract domains appeared in [20].
4 All technical definitions can be found in [19].

I. Pollet, B. Le Charlier / Electronic Notes in Theoretical Computer Science 131 (2005) 85–9886



Download	English	Version:

https://daneshyari.com/en/article/9655916

Download	Persian	Version:

https://daneshyari.com/article/9655916

Daneshyari.com

https://daneshyari.com/en/article/9655916
https://daneshyari.com/article/9655916
https://daneshyari.com/

