
Towards a Rigorous Approach to

UML-Based Development 1

Zhiming Liu and He Jifeng

International Institute for Software Technology
The United Nations University, Macao SAR, China

Xiaoshan Li

Faculty of Science and Technology, University of Macau, Macao SAR, China

Abstract

We discuss the promises and problems of UML-based development. We then suggest a framework
in which UML can be used precisely and more disciplined so as to solve the problems and meet
the promises better.

Keywords: Object-Orientation, Component-Based Development, Refinement, Specification,
Transformation

1 Introduction

When programming in the small, the specification of the problem is mainly
concerned with the control and data structures of the program. The program
development is the design and implementation of data structures and algo-
rithms through a number of steps of refinement. Verification is needed to prove
that each step preserves the specification of the control and data structures
in the previous step. Various formal methods, especially those state-based

1 Email: lzm@iist.unu.edu,hjf@iist.unu.edu,xsl@umac.mo.
J. He is on leave from East China Normal University, Shanghai, China.
J. He’s work is partly supported by the research grant 02104 MoE and the 973 project
2002CB312000 of MoST of P.R. China.

Electronic Notes in Theoretical Computer Science 130 (2005) 57–77

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.03.005

mailto:lzm@iist.unu.edu
mailto:hjf@iist.unu.edu
mailto:xsl@umac.mo
http://www.elsevier.com/locate/entcs


models [9,18] such as VDM [20] and Z [8], are widely found helpful in correct
and reliable construction of such a program.

For programming in the large, problems become more complicated. The
specification has to be described in terms of (or decomposed into) components,
their interfaces and interactions. Such a specification in general contains dif-
ferent views and aspects, e.g. the static view, the interaction view and the
behavioural view. An overall structure, i.e. the system architecture, is re-
quired to consistently unify these views. The system construction needs a
process of model transformations. These transforms have to ensure consis-
tency of the deferent views and preserve the functional and behavioural cor-
rectness. Therefore, for programming in the large, it is ideal in general to have
a multi-view modelling language that supports specifications at different levels
of abstraction. In this article, we will discuss how UML can be used for this
purpose and how it can be used formally for correct and reliable construction
of large scale software.

1.1 The promises of UML

UML2.0 is designed as a modelling language for component-based and object-
oriented development, promising to support programming in the large. It is
obviously a multi-view and multi-notional language and we can count up to
at least 10 kinds of diagrams including component diagrams, packages, class
diagrams, object diagrams and use-case diagrams for static views; activity di-
agrams, interaction diagrams (sequence diagrams and collaboration diagrams)
and statecharts for concurrency, interaction and behavioural aspects; and de-
ployment diagram for deployment. A textual specification language, Object
Constraint Language (OCL), is also part of UML for writing constraints on
the diagrams and pre- and post-conditions of operations and methods.

The multi-view and multi-notational aspect of UML has an obvious good
purpose to allow the split of an overall system model into several views and
decompose it into chunks of manageable size. Each single view focuses on
a different aspect and this will ease for analysis and understanding. This
decomposability of the model enable the development team to split the work
of producing models among different people. It is also important for tool
support as it would be more difficult for a tool to deal with one large and
complex model. UML also intends to support modelling a system at different
levels of abstraction. However, without clear means for information hiding,
this promise is not as obvious as the one discussed earlier and we need more
effort to make UML support model transformation and refinement better.

Z. Liu et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 57–7758



Download English Version:

https://daneshyari.com/en/article/9655924

Download Persian Version:

https://daneshyari.com/article/9655924

Daneshyari.com

https://daneshyari.com/en/article/9655924
https://daneshyari.com/article/9655924
https://daneshyari.com

