
Refactoring Towards a Layered Architecture

Márcio Cornélio1

Departamento de Sistemas Computacionais
Escola Politécnica — Universidade de Pernambuco

Recife, PE, Brasil

Ana Cavalcanti2

Department of Computer Science
University of York

York, England

Augusto Sampaio3

Centro de Informática
Universidade Federal de Pernambuco

Recife, PE, Brasil

Abstract

In this paper we present how refactoring of object-oriented programs can be accomplished by
using formal refinement. Our approach is based on the use of refactoring rules designed for a
sequential object-oriented language of refinement (rool) similar to Java. We define a strategy
that aims at structuring programs according to a layered architecture that involves the application
of refactoring rules, object-oriented programming laws, and data and algorithm refinement. As the
laws are proved in a weakest precondition semantics of rool, correctness of refactoring is ensured
by construction.

Keywords: Refactoring, Formal Refinement, Refinement Calculus

1
Email:mlc@upe.poli.br

2
Email:Ana.Cavalcanti@cs.york.ac.uk

3
Email:acas@cin.ufpe.br

Electronic Notes in Theoretical Computer Science 130 (2005) 281–300

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.03.015

mailto:mlc@upe.poli.br
mailto:Ana.Cavalcanti@cs.york.ac.uk
mailto:acas@cin.ufpe.br
http://www.elsevier.com/locate/entcs


1 Introduction

Object-oriented programming has been acclaimed as a means to obtain soft-
ware that is easier to modify than conventional software [20]. However, chang-
ing an object-oriented program often requires structural changes such as mov-
ing attributes and methods between classes, and partitioning one complex class
into several ones. Such modifications should change just the internal software
structure, without affecting the software behaviour as perceived by users. This
activity is called refactoring [16]. Work on refactoring usually describes the
steps used for program modification in a rather informal way [16,23,25].

In our approach, formal refactoring is achieved by the application of pro-
gramming laws that deal with commands as well as with object-oriented fea-
tures like methods and classes [3,4]. These laws were proposed for rool [8,7],
an acronym for Refinement Object-Oriented Language, which is a subset of
sequential Java with classes, inheritance, visibility control for attributes, dy-
namic binding, and recursion.

Programming laws are the basis for the derivation of refactoring rules,
along with laws that lead to data refinement of classes [12]. These laws pre-
cisely indicate the modifications that can be done to a program, with corre-
sponding proof obligations. Using laws, program development is justified and
documented. Program transformations accomplished by the use of refactoring
rules and programming laws preserve program behaviour [12]. Our language
has a weakest precondition semantics, which supports the formal justifica-
tion of the laws we use and, consequently, of our strategy. The proof that
of soundness of all laws proposed for rool [3,12,4] with respect to a weakest
precondition semantics [8,7] is presented in [12].

A system structured according to an architecture composed of independent
layers of software that deal, in an orthogonal way, with database access, GUI,
distribution and functional requirements, has classes with purposes clearly
separated [6]. Well-structured programs are essential to improve reuse and
extensibility. Using a layered architecture, we can, for instance, integrate
Object-Oriented Programming Languages and Relational Databases without
compromising software quality factors like reusability and extensibility [26].

In this paper we show how refactoring of object-oriented programs can be
accomplished by using refactoring rules [12] and programming laws [3,4]. We
present a refactoring strategy, exemplifying its application with the use of tem-
plate classes. Using this strategy, we refactor a program that is representative
of a number of real applications.

Our case study was first reported, and informally developed, in [26] and
concerns the integration of object-oriented programming languages with re-

M. Cornélio et al. / Electronic Notes in Theoretical Computer Science 130 (2005) 281–300282



Download English Version:

https://daneshyari.com/en/article/9655934

Download Persian Version:

https://daneshyari.com/article/9655934

Daneshyari.com

https://daneshyari.com/en/article/9655934
https://daneshyari.com/article/9655934
https://daneshyari.com

