
New Evaluation Commands for Maude

Within Full Maude 1

Francisco Durána Santiago Escobarb Salvador Lucasb

a LCC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain. duran@lcc.uma.es

b DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain. {sescobar,slucas}@dsic.upv.es

Abstract

Maude is able to deal with infinite data structures and avoid infinite computations by using strategy
annotations. However, they can eventually make the computation of the normal form(s) of some
input expressions impossible. We have used Full Maude to implement two new commands norm
and eval which furnish Maude with the ability to compute (constructor) normal forms of initial
expressions even when the use of strategy annotations together with the built-in computation
strategy of Maude is not able to obtain them. These commands have been integrated into Full
Maude, making them available inside the programming environment like any other of its commands.

Keywords: Declarative programming, Maude, reflection, strategy annotations.

1 Introduction

The ability of dealing with infinite objects is typical of lazy (functional) lan-
guages. Although the reductions in Maude are basically innermost (or eager),
Maude is able to exhibit a similar behavior by using strategy annotations
(see [17]). Maude strategy annotations are lists of non-negative integers asso-
ciated to function symbols which specify the ordering in which the arguments
are (eventually) evaluated in function calls: when considering a function call
f(t1, . . . , tk), only the arguments whose indices are present as positive inte-
gers in the local strategy (i1 · · · in) for f are evaluated (following the specified

1 Work partially supported by CICYT TIC2001-2705-C03-01 and TIC2001-2705-C03-02,
MCyT Acción Integrada HU 2003-0003, Agencia Valenciana de Ciencia y Tecnoloǵıa
GR03/025, and EU-India Cross-Cultural Dissemination project ALA/95/23/2003/077-054.

Electronic Notes in Theoretical Computer Science 117 (2005) 263–284

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.014

http://www.elsevier.com/locate/entcs


ordering). If 0 is found, a reduction step on the whole term f(t1, . . . , tk) is at-
tempted. The introduction of ‘true’ replacement restrictions (i.e., that forbid
reductions on some arguments) is often sufficient to ensure (and even prove) a
terminating behavior of a Maude program even though some expressions that
denote an infinite object are involved (see [18] for an overview of methods to
formally prove termination in these cases).

Full Maude is a language extension of Maude written in Maude itself,
that endows Maude with notation for object-oriented programming and with
a powerful and extensible module algebra in which Maude modules can be
combined together to build more complex modules [9,10,4]. Every Maude
module can be loaded in Full Maude by just enclosing it into parentheses.
Then, the usual evaluation commands of Maude (e.g., reduce, rewrite, etc.)
are available in Full Maude by also enclosing them into parentheses.

As a first example, let us consider the following parameterized module
LAZY-LIST with a ‘polymorphic’ sort List(X), and symbols nil (the empty
list) and _._ for the construction of polymorphic lists.

(fth TRIV is
sort Elt .

endfth)

(fmod LAZY-LIST(X :: TRIV) is
protecting INT .
sort List(X) .
subsort X@Elt < List(X) .
op nil : -> List(X) [ctor] .
op _._ : X@Elt List(X) -> List(X) [ctor strat (1 0)] .
op take : Int List(X) -> List(X) .
var N : Int . var X : X@Elt . var Z : List(X) .
eq take(0, Z) = nil .
eq take(N, X . Z) = X . take(N - 1, Z) .

endfm)

Note the strategy (1 0) associated to the operator _._, which forbids re-
placements on its second argument. Given a term of the form X . L, the strat-
egy indicates that its first argument, the subterm X, will first be reduced, and
then a reduction step on the whole term would be attempted. The LAZY-LIST
module also includes a typical polymorphic operator take which selects the
first n components of a list. Even though take has no explicit strategy an-
notation, Maude internally assigns a by default one (1 2 0). In fact, Maude
gives a strategy annotation (1 2 · · ·k 0) to each symbol f without an explicit
strategy annotation.

The instantiation of the formal parameters of a parameterized module
with actual parameter modules requires the use of views, which provide the
interpretation of the actual parameters. Given a view Nat from the functional
theory TRIV to the predefined module NAT, we may then define a function
natsFrom, which is able to generate the infinite list of natural numbers, as

F. Durán et al. / Electronic Notes in Theoretical Computer Science 117 (2005) 263–284264



Download English Version:

https://daneshyari.com/en/article/9656025

Download Persian Version:

https://daneshyari.com/article/9656025

Daneshyari.com

https://daneshyari.com/en/article/9656025
https://daneshyari.com/article/9656025
https://daneshyari.com

