
A Run-Time Environment for Concurrent

Objects With Asynchronous Method Calls

Einar Broch Johnsen, Olaf Owe, and Eyvind W. Axelsen

Department of Informatics, University of Oslo
PO Box 1080 Blindern, N-0316 Oslo, Norway
Email: {einarj,olaf,eyvindwa}@ifi.uio.no

Abstract

A distributed system may be modeled by objects that run concurrently, each with its own pro-
cessor, and communicate by remote method calls. However objects may have to wait for response
to external calls; which can lead to inefficient use of processor capacity or even to deadlock. This
paper addresses this limitation by means of asynchronous method calls and conditional processor
release points. Although at the cost of additional internal nondeterminism in the objects, this
approach seems attractive in asynchronous or unreliable distributed environments. The concepts
are illustrated by the small object-oriented language Creol and its operational semantics, which is
defined using rewriting logic as a semantic framework. Thus, Creol specifications may be executed
with Maude as a language interpreter, which allows an incremental development of the language
constructs and their operational semantics supported by testing in Maude. However, for proto-
typing of highly nondeterministic systems, Maude’s deterministic engine may be a limitation to
practical testing. To overcome this problem, a rewrite strategy based on a pseudo-random number
generator is proposed, providing Maude with nondeterministic behavior.

Keywords: Object orientation, asynchronous method calls, operational semantics, rewriting logic,
nondeterministic rewrite strategies

1 Introduction

The importance of inter-process communication is rapidly increasing with the
development of distributed computing, both over the Internet and over local
networks. Object orientation appears as a promising framework for concur-
rent and distributed systems [20], but object interaction by means of method
calls is usually synchronous and therefore less suitable in a distributed set-
ting. Intuitive high-level programming constructs are needed to unite object
orientation and distribution in a natural way. In this paper programming

Electronic Notes in Theoretical Computer Science 117 (2005) 375–392

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.012

{einarj,olaf,eyvindwa}@ifi.uio.no
http://www.elsevier.com/locate/entcs


constructs for concurrent objects are proposed with an object-oriented design
language Creol, based on processor release points and asynchronous method
calls. Processor release points are used to influence the implicit internal con-
trol flow in concurrent objects. This reduces time spent waiting for replies to
method calls in a distributed environment and allows objects to dynamically
change between active and reactive behavior (client and server).

We consider how object-oriented method calls, returning output values in
response to input values, can be adapted to the distributed setting. With the
remote procedure call (RPC) model, an object is brought to life by a proce-
dure call [6]. Control is transferred with the call so there is a master-slave
relationship between the caller and the callee. Concurrency is achieved by
multiple execution threads, e.g. Hybrid [26] and Java [19]. In Java the inter-
ference problem related to shared variables reemerges when threads operate
concurrently in the same object, and reasoning about programs in this setting
is a highly complex matter [1,11]. Reasoning considerations suggest that all
methods should be serialized [9], which is the approach taken by Hybrid. But
with serialized methods, the caller must wait for the return of a call, blocking
for any other activity in the object. In a distributed setting this limitation
is severe; delays and instabilities due to distribution may cause considerable
waiting. In contrast, message passing is a communication form without trans-
fer of control. For synchronous message passing, as in Ada’s Rendezvous
mechanism, both sender and receiver must be ready before communication
can occur. Method calls may be modeled by pairs of messages, on which the
two objects must synchronize [6]. For distributed systems, this synchroniza-
tion still results in much waiting. In the asynchronous setting, messages may
always be emitted regardless of when the receiver accepts the message. Com-
munication by asynchronous message passing is well-known from e.g. the Actor
model [2,3]. However, method calls imply an ordering on communication not
easily captured in the Actor model.

In this paper, method calls are taken as the communication primitive for
concurrent objects and given an operational semantics reflected by pairs of
asynchronous messages, allowing message overtaking. The result resembles
programming with so-called future variables [8,10,16,28,29]; computation may
continue until the return value of the call is explicitly needed in the code.
To avoid blocking the object at this point, we propose interleaved method
evaluations in objects by defining potential processor release points in method
bodies using inner guards. Hence, present activity may be suspended, allowing
the object’s invoked and enabled methods to compete for the free processor.

The operational semantics of Creol has been defined in rewriting logic [23],
which is supported by the executable modeling and analysis tool Maude [13].

E.B. Johnsen et al. / Electronic Notes in Theoretical Computer Science 117 (2005) 375–392376



Download English Version:

https://daneshyari.com/en/article/9656030

Download Persian Version:

https://daneshyari.com/article/9656030

Daneshyari.com

https://daneshyari.com/en/article/9656030
https://daneshyari.com/article/9656030
https://daneshyari.com

