
Modular Rewriting Semantics in Practice

Christiano Braga

Universidade Federal Fluminense, Niterói, Brazil

José Meseguer

University of Illinois at Urbana-Champaign, USA

Abstract

We present a general method to achieve modularity of semantic definitions of programming lan-
guages specified as rewrite theories, so that semantic rules do not have to be redefined in language
extensions. We illustrate the practical use of this method by means of two language case studies:
two different semantics for CCS, and three different semantics for the GNU bc language.

Keywords: Rewriting logic, programming languages semantics, modularity

1 Introduction

From its early stages, rewriting logic has been understood as a semantic frame-
work particularly well suited for defining the mathematical and operational se-
mantics of programming languages [22,27,19]. A semantic definition for a pro-
gramming language L takes the form of a rewrite theory RL. The mathemat-
ical semantics of L is then provided by the initial model TRL

, and L’s opera-
tional semantics is provided by deductive inference in rewriting logic within the
theory RL. That giving a rewriting semantics to a programming language is in
practice an easy way to develop executable formal definitions of programming
languages, which can then be subjected to different tool-supported formal
analysis, is by now a well-established fact [40,2,41,37,36,25,38,8,35,39,14,15].

The rewriting logic semantics of programming languages is related to both
algebraic semantics and to structural operational semantics, in the sense of

Electronic Notes in Theoretical Computer Science 117 (2005) 393–416

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.019

http://www.elsevier.com/locate/entcs


combining and extending both [28]. Since equational logic is a sublogic of
rewriting logic, rewriting semantics is a natural generalization of algebraic

semantics (see, e.g., [42,18,5] for early papers, [31] for the relationship with
action semantics, and [17] for a recent textbook) where the semantics of a
programming language L is axiomatized as an equational theory (ΣL, EL), so
that L’s mathematical semantics is given by the initial algebra TΣL/EL

, and
its operational semantics is given by equational simplification with the (typ-
ically Church-Rosser) equations EL. The point of this generalization is that
equational logic is well suited for specifying deterministic languages, but ill
suited for concurrent language specification. In rewriting logic, deterministic
features are described by equations, but concurrent ones are instead described
by rewrite rules with a concurrent transition semantics.

It has also been understood from the early stages [22,27,19], that there
is a natural semantic mapping of structural operational semantics (SOS) def-
initions [34] into rewriting logic. In essence, an SOS rule is mapped to a
conditional rewrite rule [19,38,39,26,28]. Rewriting logic semantics combines
the best features of algebraic semantics and SOS in a generalized framework
that adds a crucial distinction between equations and rules (determinism vs.
concurrency) missing in each of those two formalisms. Furthermore, the agree-
ment between mathematical and operational semantics is extended to this
general setting, taking the form of a completeness theorem for rewriting logic
[22,6].

Rewriting logic’s distinction between equations and rules is of more than
academic interest. The point is that, since rewriting with rules R takes place
modulo the equations E [22], only the rules R contribute to the size of a sys-
tem’s state space, which can be drastically smaller than if all axioms had been
given as rules. This observation, combined with the fact that rewriting logic
has several high-performance implementations [1,16,11] and associated formal
verification tools [12,20], means that we can use rewriting logic language defi-
nitions to obtain practical interpreters and language analysis tools essentially
for free. For example, in the JavaFAN formal analysis tool [14,15], the se-
mantics of Java and the JVM are defined as rewrite theories in Maude, which
are then used to perform formal analysis such as symbolic simulation, search,
and LTL model checking of Java programs with a performance that compares
favorably with that of other Java analysis tools.

Internal advances within rewriting logic have substantially increased its
expressive power for programming language semantics purposes, leading to
very succinct and expressive semantic rules, which can be executed in current
language implementations. Relevant developments in this regard include:

C. Braga, J. Meseguer / Electronic Notes in Theoretical Computer Science 117 (2005) 393–416394



Download	English	Version:

https://daneshyari.com/en/article/9656031

Download	Persian	Version:

https://daneshyari.com/article/9656031

Daneshyari.com

https://daneshyari.com/en/article/9656031
https://daneshyari.com/article/9656031
https://daneshyari.com/

